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ABSTRACT 

An Evaluation of GABAB Receptors on Modulating Neuroinflammation in a Non-
Transgenic Animal Model of Alzheimer’s Disease 

 
by 

Monica Michelle Bolton 

Dr. Jefferson Kinney, Examination Committee Chair  
Associate Professor of Psychology 
University of Nevada, Las Vegas 

 
 

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive 

memory loss and distinct neuropathological hallmarks, including amyloid beta plaques (Ab) and 

neurofibrillary tau tangles (NFT). Although the etiology remains to be discovered, several risk 

factors exist that significantly contribute to developing AD. Diabetes is one of the major risk 

factors associated with AD and is characterized by disrupted insulin signaling that may contribute 

to or exacerbate AD pathologies. Furthermore, both disorders result in increased 

neuroinflammation. Considerable evidence has demonstrated that a chronic inflammatory 

response, in particular chronic microglia activation, promotes Ab production as well as the 

hyperphosphorylation of tau through the sustained release and increased levels of several pro-

inflammatory cytokines. These data make understanding the mechanisms driving the 

inflammatory response and treatment of the inflammation an important target in AD research. In 

addition to aberrant microglia functioning, the loss of a number of aspects of GABAergic 

signaling, including GABAB
 
receptors, have been reported in clinical AD populations and animal 

models of AD. As microglia express functional GABAB receptors and activation on microglia 

appear to reduce their activity, GABA signaling may result in a decrease in pro-inflammatory 

cytokine production. Therefore, the purpose of this study is to investigate the role of GABAB in 
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neuroinflammation encompassing to AD pathogenesis using a non-transgenic animal model 

related to diabetes. Using a low-dose schedule of streptozotocin (STZ) administration to induce a 

sustained hyperglycemic state, we treated with animals with a GABAB receptor agonist (baclofen) 

to reduce activated microglia and pro-inflammatory effects. We found that STZ administration led 

to significantly increased blood glucose levels, memory impairments in the novel object 

recognition task, hyperphosphorylated tau, increased activated microglia, and pro-inflammatory 

cytokines. Treatment with baclofen ameliorated the above changes induced by STZ. Therefore, 

GABAB receptors play a role in modulating microglia function and neuroinflammation.    
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CHAPTER 1 

INTRODUCTION 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects up to 

11-16 million people worldwide (Alzheimer's Association, 2016). AD diagnoses is increasing at 

an alarming rate due to the rapid aging of the global population. Someone in the United States will 

develop AD every 66 seconds. By 2050, this rate of development is expected to raise to every 33 

seconds (Alzheimer's Association, 2016). The cost of AD on family members, caregivers, and/or 

nursing home fees result in a financial burden of approximately $221 billion (Alzheimer's 

Association, 2016). Clinical symptoms of AD include the progressive memory loss and decline in 

cognitive functions, which may lead to behavioral alterations including anxiety, psychosis, and 

confusion (Cummings et al., 2008). The pathological hallmarks of AD are amyloid b (Ab) plaques 

and neurofibrillary tau tangles (NFT) which eventually lead to neuronal loss (Glenner and Wong, 

1984; Grundke-Iqbal et al., 1986).  

According to the amyloid hypothesis of AD, the progression of the disorder is speculated 

to begin with the gradual accumulation and aggregation of Ab peptides leading to a molecular and 

cellular cascade that eventually results in synaptic alterations, microglial activation, and  insoluble 

tau helical filaments (Haass and Selkoe, 2007). Genetic factors are associated with the 

development of AD pathologies; however, 95-99% of AD cases (referred to as sporadic AD) are 

not accounted for by genetics alone (Alzheimer's Association, 2016). Risk factors including 

advanced age and Type 2 diabetes mellitus have been associated with the development of sporadic 

AD (Haan, 2006). Approximately 80% of patients with AD have a form of insulin dysregulation 

and patients with diabetes are twice as likely to develop AD (Ott et al., 1996; Janson et al., 2004).  
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Neuroinflammation is associated with both AD and diabetes (Srodulski et al., 2014). While 

inflammation in the brain can play a beneficial role in reducing AD pathologies during the early 

stages of the disorder, chronic neuroinflammation has been shown to exacerbate Ab aggregation 

and plaque formation as well as increased tau hyperphosphorylation (Glass et al., 2010; Rubio-

Perez and Morillas-Ruiz, 2012). Microglia, the main driver of the immune response in the brain, 

are found in abundance clustered near Ab plaques in AD brains (Rezai-Zadeh et al., 2011; Jay et 

al., 2015). In response to injury or stressors, these immune cells release pro-inflammatory 

cytokines. When left unchecked, continued release of pro-inflammatory cytokines can contribute 

to pathology and disease progression. However, the mechanisms that contribute to the sustained, 

chronic inflammation in AD are not entirely understood. 

One possible method of regulating or suppressing microglial activation may be through 

endogenous inhibitory neurotransmitter activity. Gamma-aminobutryic acid (GABA) is the main 

inhibitory neurotransmitter in the brain and recent evidence suggests that GABAergic signaling 

undergoes profound pathological changes in AD resulting in decreased neurotransmission and 

receptor expression (Iwakiri et al., 2005; Yanfang Li et al., 2016). The loss of function due to 

reduction of the neuronal expression of GABAB receptor could have detrimental effects, as these 

receptor subtypes play a role in oscillatory activity associated with memory and cognitive 

functioning (Brown et al., 2007). Interestingly, microglia also express functional GABAB 

receptors (Kuhn et al., 2004). In a cell culture study, the administration of a GABAB receptor 

agonist, baclofen, attenuated the release of pro-inflammatory cytokines from microglia after an 

immune challenge (Kuhn et al., 2004). Therefore, it is interesting to speculate the 

neuroinflammatory effects of GABAB receptor activation on AD pathologies.  
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The purpose of this study is to evaluate the role of GABAB receptors as it relates to 

neuroinflammation in an animal model utilizing risk factor diabetes mellitus to recapitulate aspects 

of AD pathology. Streptozotocin (STZ) is commonly used in research to disrupt insulin production 

and altered insulin signaling that results in similar pathologies with sporadic AD, including 

neuroinflammation. In this experiment, we found that a low-dose (40 mg/kg), staggered 

administration schedule resulted in sustained, elevated blood glucose levels (indicative of insulin 

dysregulation). After STZ administration, a subset of animals received the GABAB receptor 

agonist, baclofen, twice a day for two weeks with the goal of reducing neuroinflammation for a 

sustained period of time. Following which, learning and memory was assessed in two tasks 

commonly used in AD rodent models (novel object recognition and cued and contextual fear 

conditioning). The results demonstrated that baclofen ameliorated the STZ-induced memory 

impairments in the novel object recognition task while no significant learning impairments were 

observed in cued and contextual fear conditioning. Baclofen administration reduced 

neuroinflammatory markers and rescued protein changes associated with AD that were altered 

with the STZ administration. These data suggest that GABAB receptors can modulate microglia 

function and neuroinflammation that can rescue memory impairments and AD pathological 

markers.  
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CHAPTER 2 

REVIEW OF RELATED MATERIAL  

Alzheimer’s Disease Neuropathological Hypotheses 

Alzheimer’s disease (AD) is characterized clinically by a progressive decline in memory 

and cognitive functions. Initial clinical diagnosis is determined by a physician using neurological 

and clinical tests as well as blood and brain imaging. These symptoms vary among individuals; 

however, the most common initial symptom is the progressive inability to remember new 

information due to the hippocampal region being the first area affected in this disorder (Padurariu 

et al., 2012). The core clinical symptoms of AD include memory loss that disrupts daily life, 

challenges in problem solving or planning, difficulty to completing familiar tasks, trouble 

understanding visual images and spatial relationships, increase anxiety, agitation, sleep 

disturbances, etc. (Alzheimer's Association, 2016). Confirmation of diagnosis is made postmortem 

by the examination of senile amyloid-b (Ab) plaques and neurofibrillary tau tangles (NSTs) in the 

brain, particularly in the hippocampus. These neuropathological hallmarks of the disorder lead to 

neuronal cell loss that occur before any noticeable clinical symptoms (Mattson, 2008). The initial 

cause of the pathological symptoms is unknown; however, researchers speculate that the 

accumulation of Ab followed by the deposition of  NFTs triggers the onset of synaptic and 

neuronal dysfunction and subsequent neuronal loss (Hardy and Higgins, 1992).  

Ab plaques are extracellular structures composed of amyloid b peptides 40-42 amino acids 

in length. Ab peptides are generated by proteolytic cleavage of b-amyloid precursor protein (APP) 

and are normal products of APP metabolism that occurs throughout life (Hardy and Selkoe, 2002). 

APP is a single-transmembrane, receptor-like protein found ubiquitously in neuronal and non-

neuronal cells and has also been discovered circulating in extracellular fluids like cerebrospinal 
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fluid (CSF) and plasma (Haass et al., 1992; Seubert et al., 1992; Shoji et al., 1992; Busciglio et 

al., 1993). Processing of APP is mediated by two membrane-bound proteases, a-secretase or b-

secretase (also known as b-site APP-cleaving enzyme (BACE); (Haass, 2004). Following BACE 

cleavage, a special type of protease complex that is mediated by g-secretase along with obligatory 

presenilin-1 (PS1) or PS2, nicastrin, anterior pharynx-defective 1 (APH1), and presenilin enhancer 

2 (PEN2) makes an intramembrane scission to APP (Wolfe et al., 1999; Steiner et al., 2000; 

Kimberly et al., 2003; Takasugi et al., 2003; Edbauer et al., 2003; Haass, 2004). There are variable 

sites at which this complex cuts but it is the final cut at the g-site that releases Ab into biological 

fluids. Variability with the g-cut can occur and lead to Ab amino acids 38, 40, or 42, with the Ab42 

peptide having a readiness to self-aggregate leading to the pathogenicity of Ab (Borchelt et al., 

1996). 

Several lines of evidence suggest aberrant APP processing in AD. One of the first 

indications of the role of APP in AD comes from individuals with Down syndrome. Young adults 

with Down syndrome display the clinical and histopathological signs of AD, including plaques 

containing Ab and NFT (KE Wisniewski et al., 1985). These individuals have a third copy of 

chromosome 21, the location where the APP gene is located, prompting researchers to investigate 

mutations of APP in AD (Holtzman et al., 1996). It was subsequently found that all known 

mutations linked to familial AD, or early on-set AD, affect APP processing or the propensity of 

Ab aggregation (Heppner et al., 2015). For example, certain mutations in the genes that encode 

the presenilin proteins favor the cleavage of APP by g-secretases (Citron et al., 1992; X-D Cai et 

al., 1993; Suzuki et al., 1994) and separate mutations in APP result in a high self-aggregation of 

Ab into amyloid fibrils (T Wisniewski et al., 1991). These mutations result in toxic amyloidgenic 



www.manaraa.com

 
 
 

6 

Ab plaques consisting mostly of Ab42, as observed by transgenic mice and cell lines harboring 

human APP mutations (LaFerla and KN Green, 2012; Heppner et al., 2015).  

Ab can coexist as monomers, oligomers, protofibrils, fibrils and Ab plaques with varying 

levels of pathogenic impact. Soluble oligomers are Ab assemblies that can bind to other 

macromolecules or cell membranes and become insoluble. Oligomers can aggregate to form 

protofibrils then fibrils which are the basis of plaques. Differences exist in aggregation between 

the soluble oligomers Ab40 and Ab42. Due to the extended length in amino acid number of Ab42 

and conformational freedom of its N termini, Ab42 forms less compact fibrils compared to the 

more compact form resulting from Ab40 (Roychaudhuri et al., 2009). Fibrils are aggregates of Ab 

with a b structure that make up insoluble plaques found in AD (Cavallucci et al., 2012). 

Surprisingly, plaque number does not correlate significantly with neuronal death and cognitive 

impairment (McLean et al., 1999), whereas soluble Ab oligomers appear to be more detrimental 

(Haass and Selkoe, 2007).   

Previous, somewhat crude methods of analyzing Ab plaque deposition in postmortem brain 

tissue of AD patients used two-dimensional plaque counts that can miss small, heterogeneous Ab-

assembly forms listed above. More precise methods using specific Ab enzyme-linked-immuno-

sorbent assays (ELISAs), along with western blotting and mass spectrometry, allows for a 

multifactorial analysis of Ab quality and quantity that can be further correlated with cognitive 

measures. Soluble Ab correlates better with cognitive deficits compared to plaque counts (Lue et 

al., 1999; McLean et al., 1999; Jun Wang et al., 1999; Näslund et al., 2000; Haass and Selkoe, 

2007). It is difficult to deduce whether large accumulation of insoluble Ab contribute solely to 

neuronal injury, as they are surrounded by a number of smaller, diffusible oligomers (Haass and 
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Selkoe, 2007). Soluble, low-number oligomers can inhibit hippocampal long-term potentiation 

(LTP) as observed in cell cultures (Townsend et al., 2006) and interfere with memory of learned 

behavior in wake, behaving rats (Cleary et al., 2005). Therefore, soluble, low-number oligomers 

are considered more toxic and detrimental than plaques in AD. 

Several risk factors associated with sporadic AD and Ab aggregation have recently been 

discovered. Evidence from genome-wide association studies (GWAS) confirm expression of the 

e4 allele of the APOE gene with increased risk of sporadic AD (Harold et al., 2009; Lambert et 

al., 2009). The APOE gene is found in three alleles: e2 (8.4% frequency), e3 (77.9% frequency), 

and e4 (13.7% frequency; (Farrer et al., 1997). Increased frequency of AD and lower age of onset 

is associated with APOE e4, with approximately 40% of AD patient as carriers of two e4 alleles 

(Corder et al., 1993; Rebeck et al., 1993; Farrer et al., 1997). Apolipoprotien E protein (ApoE) is 

found in liver and macrophages where it regulates cholesterol metabolism and lipid homeostasis 

(Mahley and Rall, 2000). ApoE4 carriers have an increased risk of developing atherosclerosis, 

coronary heart disease, and stroke (Mahley and Rall, 2000; Lahoz et al., 2001). In the central 

nervous system (CNS), ApoE (produced mainly by astrocytes) transports cholesterol to neurons 

through ApoE receptors (Bu, 2009). Several studies in humans and rodent models provide 

evidence that Ab are modulated by the ApoE isoform (with e4 having increased plaque load and 

e2 being protective), which suggests its role in metabolism and aggregation of Ab (Reiman et al., 

2009; Bales et al., 2009; Castellano et al., 2011). For instance, in APP transgenic mice, ApoE4 is 

less efficient at Ab clearance (Castellano et al., 2011). Furthermore, ApoE deficient mice are able 

to clear Ab more effectively compared to control mice (DeMattos et al., 2004). Although studies 

provide clear evidence that ApoE plays a critical role in mediating deposition and clearance of Ab 

levels, the mechanisms in doing so remained to be discovered.  
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The other core pathological feature of AD is neurofibrillary tau tangles (NFT). Tau is a 

microtubule-associated protein that plays an important role in microtubule assembly and 

stabilization, necessary for neuronal morphology and structure, transportation of vesicles and 

organelles, and an anchor for enzymes (Yipeng Wang and E Mandelkow, 2015). The structure of 

tau has a proline-rich region with two domains on each end: a basic assembly domain on the C-

terminal and an acidic projection domain on the N-terminal (Mukrasch et al., 2009). The opposing 

charges on opposite ends of tau are crucial for interactions between microtubules as well as for 

internal folding and aggregation (E-M Mandelkow and E Mandelkow, 2012).  

An important characteristic of tau is the large number of potential phosphorylation sites. 

Maintaining balance between phosphorylation and dephosphorylation under physiological 

conditions is critical (Johnson and Stoothoff, 2004). Under normal conditions, tau phosphorylation 

promotes microtubule assembly and axonal transport (Johnson and Stoothoff, 2004). Several 

phosphatases interact with tau to reverse phosphorylation, including protein phosphatase 1 (PP1), 

PP2A, PP2B, and PPC (Tian and Jianzhi Wang, 2002). The conversion of normal tau into paired 

helical filaments (PHF, the main component of NFT) occurs when specific combinations of 

Ser/Thr kinases (cdk5/GSK3 and calcium calmodulin kinase II/GSK3b) hyperphosphorylate 

within the proline-rich segment of tau (KL Rosenberg et al., 2008). This state can be reversed by 

PP2A, which has the ability to dephosphorylate tau, preventing its assembly into PHFs, and 

allowing it to bind back to microtubules. Alternatively, if different combinations of protein kinases 

rephosphorylate tau, then the PHF will lead to NFT formation associated with AD (Jian Zhi Wang 

et al., 2007). Hyperphosphorylated tau is resistant to degradation and prone to aggregation leading 

to NFT.  
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An addition to hyperphosphorylated tau, NFT are composed of truncated tau proteins that 

exhibit different conformational properties compared to normal tau. Truncated tau can result in 

abnormal microtubule assemblies leading to neuronal toxicity (Zilka et al., 2006). Normal 

posttranslational modifications involve the cleavage of tau by caspases and calpain. (Jian Zhi 

Wang et al., 2007). However, tau can become prone to hyperphosphorylation when abnormal 

cleaving events occur. One suggestion is that when tau is cleaved at its N-terminus by calpain, it 

becomes susceptible for caspase to cleave tau at its C-terminus resulting in toxic truncated tau 

(Jian Zhi Wang et al., 2007). In AD brain tissue, caspases associated with these tau cleavage events 

(caspase 823 and caspase924) are co-localized with NFT (Rohn et al., 2002). The development of 

these altered posttranslational modification events leading to truncated tau remain to be 

discovered.  

There are no clear answers to describe the interaction between NFT and Ab. Furthermore, 

mutations and abnormalities in tau are not specific to AD. Tau is located on chromosome 17 and 

specific mutations in this gene (FTDP-17) are linked to frontotemporal dementia with 

parkinsonism resulting in abnormally phosphorylated tau pathology with no amyloid pathology 

(Baker et al., 1997; Hutton et al., 1998; Spillantini et al., 1998; Poorkaj et al., 1998). However, 

studies have observed indications of one pathology influencing the other. Specifically, in mice 

overexpressing a mutant form of tau commonly used to study tauopathies (a general term for 

neurodegenerative disorders that involve the aggregation of tau protein into NFT), injection of 

Ab42 peptides result in elevated hyperphosphorylated tau (Gotz et al., 2001). Analogously, AD 

mice expressing mutations in both APP and tau display tau pathology earlier compared to mice 

with just the tau mutation (Lewis et al., 2001; M Pérez et al., 2005; Ribé et al., 2005; Terwel et 

al., 2008).  
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One possible link between NFT and Ab points to the actions of a protein kinase called 

glycogen synthase kinase 3 beta (GSK3b). GSK3b impairs the ability of tau to both bind and 

stabilize microtubules (Johnson and Hartigan, 1999; Cho and Johnson, 2004). Tau becomes 

hyperphosphorylated in GSK3b-overexpressing mice (Engel et al., 2006). PS1 mutation (one of 

the mutations in familial AD associated with altered Ab processing) can increase GSK3b activity 

and its association with motor proteins on microtubules that interact with tau, leading to 

dissociation of tau with microtubules and the possibility to aggregate (Pigino et al., 2003). Various 

AD transgenic animal models and in vitro studies (targeting either mutations in APP, tau, or both) 

display increased GSK3b activity (Takashima et al., 1996; 1998; Ishizawa et al., 2003; Billings et 

al., 2007; Terwel et al., 2008). In vivo and in vitro AD model studies also demonstrate that 

inhibition of GSK3b attenuates APP processing and reduces hypersphosphorylated tau (Phiel et 

al., 2003; Noble et al., 2005). A more recent study compared the interaction of single nucleotide 

polymorphisms (SNPs) associated with the GSK3b gene with postmortem AD pathologies and 

found interactions between SNPs and both Ab plaques and NFT (Hohman et al., 2016). The 

authors suggest that Ab and NFT progression may be independent and that GSK3b activity is the 

point at which the pathologies intersect.  

The progression of NFT and hyperphosphorylated tau in AD follows a distinct neurological 

pattern that begins in the entorhinal cortex (Braak stages I-II), spreads the limbic and adjoining 

neocortex (stages III-IV), then to the neocortex including the secondary and primary fields (stages 

V-VI) (H Braak and E Braak, 1991; Bancher et al., 1993; H Braak and E Braak, 1997; H Braak et 

al., 2006). The degree of NFT formation in postmortem AD brains and the progression through 

the Braak staging is strongly correlated with increasing memory loss and dementia (H Braak and 

E Braak, 1991; 1997). Since the limbic system, particularly the hippocampus, is involved in 
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memory systems, Braak staging correlates the memory deficits associated with AD. Other 

pathologies follow a similar pattern of neurological pattern referred to as Braak staging, including 

Ab plaques, reactive microglia, and cholinergic loss (Serrano-Pozo et al., 2011). However, 

compared to Ab oligomers and plaques, some researchers believe that the NFT are the main source 

of cognitive decline in patients with AD (Wilcock and Esiri, 1982; Delaère et al., 1989; Arriagada 

et al., 1992; Duyckaerts et al., 1997; Gómez-Isla et al., 1997; Delacourte et al., 2002; 

Giannakopoulos et al., 2003; Guillozet et al., 2003; Bretteville and Planel, 2008). Animal models 

with tau mutations corroborate these findings, demonstrating significant impairment in learning 

and memory and altered hippocampal synaptic plasticity (Polydoro et al., 2009; Hoover et al., 

2010; Van der Jeugd et al., 2011; Burnouf et al., 2012).  

Lastly, cholinergic cell loss is commonly found in postmortem analysis of AD brains and 

is the another core feature of the disorder. The pattern of cell loss follows a similar progression to 

the Braak staging discussed previously (Beach et al., 2000). Additional evidence towards 

disruptions in acetylcholine signaling are associated with the reduction in acetyltransferase (the 

enzyme that modulates production of acetylcholine) and acetylcholinesterase (the enzyme that 

degrades acetylcholine) (Davies, 1979). It is unclear how cholinergic changes are brought about 

and has been the focus of considerable research. Most of the currently available drug therapies for 

AD target the cholinergic system by inhibiting acetylcholinesterase. Although these drugs can slow 

the progression of symptoms in patients with mild cases of AD, they do not halt the disorder 

(Rogers et al., 1998; Rösler et al., 1999; Birks, 2006).        

Many transgenic mouse models of AD exist to help researchers understand the disease 

progression. They have been exceedingly useful in highlighting signaling mechanisms and protein 

interactions related to the disorder; however, no single transgenic model represents all aspects of 
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the disease spectrum. The most common class of transgenic mice are those overexpressing human 

mutations in APP. These animals typically develop Ab plaques composed of Ab42 between 6-9 

months of age (LaFerla and KN Green, 2012). They also develop memory impairments that can 

be observed before the appearance of plaques, suggesting that Ab may be mediating cognitive 

decline (LaFerla and KN Green, 2012). Based on data from transgenic mice, researchers 

discovered that Ab oligomeric species may play a larger role in the pathogenicity of AD (Haass 

and Selkoe, 2007). Interestingly, NFT are not observed in APP-overexpressing mice, yet some 

display hyperphosphorylated tau (Götz et al., 2007). Several reasons may account for the lack of 

NFT, including rodent tau having a different structure that prevents it from accumulating into NFT 

or another possibly is that the rodent’s lifespan is not long enough to allow for the development of 

NFT which takes decades in humans. To account for the lack of NFT, multigenic mice were created 

that have mutated human tau in addition to overexpression APP (Lewis et al., 2001; Oddo et al., 

2003). Sophisticated transgenic mouse models have since been generated, incorporating a variety 

of known genetic mutations to mirror AD pathologies. In addition to the core pathologies, most of 

these models exhibit cognitive decline and increased neuroinflammation (LaFerla and KN Green, 

2012). They have revealed discoveries of potential disease progression and interactions not 

previously considered.   

Translational issues exist with the vast majority of transgenic models used to recapitulate 

AD pathologies, since nearly all are mutations associated with APP processing or tau (or both). 

However, these mutations reflect those found in familial AD and not what is observed with 

sporadic AD, which is far more prevalent. Although useful in advancing our understanding of the 

disorder, concerns arise with using transgenic AD models to examine new therapeutics or targets 

slated for the heterogeneous human AD population and may contribute to the lack of consistency 
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between results in preclinical trials and human clinical trials (LaFerla and KN Green, 2012). Using 

animal models that exhibit known risk factors associated sporadic AD to examine drug therapies 

would be a beneficial translational approach. 

Diabetes Risk Factor 

 Individuals with diabetes have an increased risk of developing AD (Brands et al., 2005; 

Biessels et al., 2006). Diabetes is a metabolic disorder that results in hyperglycemia and insulin 

dysregulation. Currently, 80% of patients diagnosed with AD have impairments in glucose 

tolerance or have been diagnosed with diabetes (Janson et al., 2004). Approximately 23.6 million 

people in the United States are affected by diabetes, with this number predicted to increase to over 

29 million by 2050 (Centers for Disease Control, 2014). Between 5-10% of these individuals have 

Type 1 diabetes, characterized by hyperglycemia and insulin deficiency. Whereas the most 

common form is Type 2 diabetes, accounting for 90-95% of cases and is associated with 

hyperinsulinemia and insulin resistance. Mild to severe cognitive impairments are associated with 

both forms of diabetes, including memory impairments and attention (Strachan et al., 1997; Awad 

et al., 2004). Individuals with Type 2 diabetes are twice as likely to develop AD later in life 

compared to the normal population (Janson et al., 2004), while Type 1 diabetes patients have an 

80% chance of being diagnosed with AD (Whitmer et al., 2015). Due to the heterogeneity of 

diabetes symptoms, it is difficult to determine which component contributes to the risk associated 

with developing AD.  

 Evidence exists that suggest insulin resistance may be a contributing factor in AD. Insulin 

is produced by pancreatic beta cells and regulates glucose metabolism in the periphery (Woods et 

al., 1985; Saltiel and Kahn, 2001). Early studies of brain glucose metabolism considered the brain 

as insulin insensitive, since the uptake of glucose by the CNS is not dependent on insulin. The 
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transportation of glucose into neurons and glia relies on GLUT3 and GLUT1 receptors (McEwen 

and Reagan, 2004; Gray et al., 2014). However, it has since been discovered that CNS insulin 

levels regulate overall energy homeostasis as well as control of food intake, metabolic rate, and 

energy expenditure (Schwartz et al., 1992; Chavez et al., 1995). In addition, insulin concentration 

in the brain is independent of circulating peripheral insulin (Havrankova et al., 1979), yet insulin 

readily crosses the blood brain barrier via an insulin receptor-mediated transport process (Baskin 

et al., 1987; Baura et al., 1993; Banks, Jaspan, Huang, et al., 1997; Banks, Jaspan, and Kastin, 

1997). Evidence suggests that insulin is produced locally in the brain, as insulin CNS 

concentrations are 10-100 times higher compared to plasma levels (Havrankova, Roth, et al., 

1978); however, further investigations are needed to elucidate the mechanisms of its local 

production.  

Receptors for insulin are selectively distributed in the brain, with the highest density found 

in the olfactory bulb, hippocampus, amygdala, cerebral cortex, and hypothalamus (Havrankova, 

Schmechel, et al., 1978; Havrankova, Roth, et al., 1978; Baskin et al., 1987; Unger et al., 1991). 

Both neurons and astrocytes express insulin receptors located at the synapses (Abbott et al., 1999). 

Due to their abundance in the hippocampus and areas of the medial temporal cortex, insulin and 

insulin receptors play a role in modulating synaptic activity, LTP, and memory (Baskin et al., 

1988; W-Q Zhao and Alkon, 2001). For instance, insulin influences cell membrane expression of 

N-methyl-D-aspartate (NMDA) receptors, which are highly abundant in these regions and are 

critical for LTP and synaptic plasticity (Skeberdis et al., 2001).  

Memory enhancement after insulin administration has been observed in several studies. 

Rodent studies have found enhanced memory performance in the Morris water maze and passive-

avoidance task after intracerebroventricular insulin infusions (Park et al., 2000; Haj-ali et al., 
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2009). In healthy humans, intranasal and intravenous administration of insulin enhances story 

recall and improvement in cognitive flexibility (Kern et al., 1999; Craft et al., 1999; Fehm et al., 

2000). Similarly, studies demonstrate that insulin receptor expression can be modulated by 

learning. In one study, insulin signaling molecules and the amount of insulin receptor mRNA in 

the hippocampus was increased in rats trained in the Morris water maze compared to untrained 

rats (W Zhao et al., 1999).  

In AD, low concentrations of insulin and an increase number of insulin receptors are 

observed compared to age-matched controls (Frölich et al., 1999; Hoyer, 2002; Craft and Watson, 

2004). Dysregulation of cellular processes related to insulin are thought to contribute to both AD 

and type 2 diabetes, including glucose and cholesterol metabolism, ApoE processing, and second 

messenger signaling (Janson et al., 2004; Martins et al., 2006; Moreira et al., 2007; W-Q Zhao 

and Townsend, 2009). It is further speculated that insulin dysregulation in AD exacerbates the 

formation of Ab plaques and NFT (Sims-Robinson et al., 2010). One theory suggests that altered 

insulin signaling results in chronic oxidative metabolism and increased acidosis in the Golgi 

apparatus and endoplasmic reticulum that alter APP metabolism, resulting in a favorable 

atmosphere for the accumulation of Ab (Frölich et al., 1999; Hoyer, 2002).  

Insulin and Ab are both degraded by insulin-degrading enzyme (IDE) in healthy neurons 

and microglia. In type 2 diabetes, insulin resistance results in elevated insulin levels potentially 

leading to competition between Ab and insulin for IDE (Gasparini and H Xu, 2003). Brain tissue 

from AD patients display significantly lower amounts of IDE mRNA compared to age-matched 

controls (A Pérez et al., 2000; Cook et al., 2003; Farris et al., 2003). Thus, a deficiency in IDE 

processing may contribute to pathologies in AD and diabetes. In a study examining the effects of 

insulin on Ab42 levels in CSF of healthy older adults, researchers found that intravenous insulin 
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administration led to an increase of Ab42 in the CSF (Watson et al., 2003). As mentioned 

previously, insulin infusions lead to enhanced memory abilities but this effect was decreased in 

older individuals with the greater increase in CSF Ab42 concentrations. The clearance mechanisms 

of Ab42, potentially via IDE, may be disrupted in older adults as a consequence of age and the 

sustained elevation of Ab42 may affect memory (Craft and Watson, 2004). Insulin sensitizers may 

aid in alleviating competition between insulin and Ab with IDE by increasing the sensitivity of 

insulin receptors (Pedersen et al., 2006). AD transgenic mice treated with the insulin sensitizer, 

rosiglitazone, had reduced Ab42 levels and improvement in spatial learning and memory 

(Pedersen et al., 2006). A preliminary study using rosiglitazone in AD patients resulted in better 

cognitive measures after treatment versus before; however, no change or decline in Ab42 levels 

were observed (Watson et al., 2005). Together, insulin dysregulation influences Ab levels 

potentially via IDE. 

In vitro and in vivo studies demonstrate that insulin regulates tau phosphorylation (M Hong 

and VM-Y Lee, 1997; Lesort and Johnson, 2000; Schubert et al., 2003; Cheng et al., 2005). 

Conversely, hyperinsulinemia occurs following tau hyperphosphorylation in rat brains (Freude et 

al., 2005). Furthermore, mice deficient in insulin receptor substrate-2 (Schubert et al., 2003; 2004) 

or the neuronal insulin receptor gene (Schubert et al., 2004) result in increased tau phosphorylation 

and NFT. Intranasal insulin has been shown to ameliorate tau hyperphosphorylation in a rodent 

model of type 2 diabetes (Yang et al., 2013). Despite observing changes in phosphorylated states 

of tau in culture and animal models of diabetes, little is known about diabetes and tau pathogenesis.  

Mitogen-activated protein kinase (MAPK) and Akt-signaling pathways (both implicated in 

AD pathogenesis) are cellular mechanisms activated after insulin receptor signaling. MAPK is 

ubiquitous kinase that regulates cell proliferation and cell death (Pearson et al., 2001). MAPK 
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immunoreactivity and expression is increased in AD brains compared to normal controls (Hensley 

et al., 1999) and is correlated with Ab plaques and NFT (Hensley et al., 1999; Munoz and Ammit, 

2010). Further, studies have demonstrated its involvement in tau phosphorylation, 

neuroinflammation, and synaptic plasticity (Munoz and Ammit, 2010). Akt signaling mediates cell 

proliferation and protein synthesis (Brazil and Hemmings, 2001; Tremblay and Giguère, 2008). 

Through Akt signaling, insulin receptor activation via insulin leads to GSK3b inactivation. 

Changes in glucose and insulin concentrations in the hippocampus and cortex influences GSK3b 

activity (Clodfelder-Miller et al., 2005). During insulin resistance, GSK3b is dephosphorylated 

and, thus, activated (Clodfelder-Miller et al., 2006); (Balaraman et al., 2006). Activation of 

GSK3b can further perpetuate insulin resistance by reducing glucose clearance (J Lee and Kim, 

2007), increased PS1 activity leading to elevation in Ab production (Phiel et al., 2003), and 

hyperphosphorylated tau (Balaraman et al., 2006). 

The association between AD and diabetes is particularly strong among APOE e4 carriers 

(Kuusisto et al., 1997; Peila et al., 2002; Irie et al., 2008; Matsuzaki et al., 2010). For example, 

ApoE4 carriers with type 2 diabetes have a five-fold risk of developing AD compared with 

individuals who are not ApoE4 carriers and do not have diabetes (Haan, 2006). The prevalence of 

Ab plaques and NFT are greater in patients with diabetes who have ApoE4 and insulin 

dysregulation in some patients with sporadic AD to has been linked to the APOE genotype (Peila 

et al., 2002).  

Clinical trials examining effect of intranasal insulin as potential therapy in early AD are 

ongoing. Insulin can bypass the blood-brain barrier and enter the CSF via intranasal administration 

(Born et al., 2002). Studies on older adults with AD or mild cognitive impairment showed 

significant improvement in memory with both low and high doses of intranasal insulin that 
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persisted two months after the end of treatment (Craft, 2012; Yarchoan and Arnold, 2014). 

Although acute intranasal insulin treatment shows promise with cognitive functioning, long-term 

studies are imperative to ensure that hyperinsulinemic conditions do not promote further insulin 

resistance in AD patients.  

A commonly used method to study diabetes and AD pathologies in rodents uses the 

administration of a compound called streptozotocin (STZ; 2-deoxy-2-(3-(methyl-3-nitrosoureido)-

D-glucopyranose). STZ is selective for glucose transporter 2 (GLUT2) located mainly on insulin 

producing pancreatic beta cells and results in alkylation and methylation of DNA leading to 

apoptosis (Murata et al., 1999; Szkudelski, 2001). Permanent diabetes results when high doses 

(100-200 mg/kg, intraperitoneal) are administered to rodents, that results in little to no insulin 

production and high mortality rate among subjects (Szkudelski, 2001; Grünblatt et al., 2007). 

Alternatively, multiple low to moderate doses of STZ (30-60 mg/kg, intraperitoneal) results in 

insulin resistance by maintaining insulin-immunoreactive cells in the pancreas (Ito et al., 1999). 

In this animal model of type 1 diabetes, animals display learning deficits (Stranahan et al., 2008), 

increased GSK3b activity (Jope and Johnson, 2004), increased tau phosphorylation, increase Ab 

levels, and neuroinflammation (Mensah-Brown et al., 2005; Jolivalt et al., 2008). Two routes of 

administration are common using STZ: peripheral administration that targets pancreatic beta cells 

and intracerebroventricular (ICV) infusions that results in reduced expression of insulin receptors 

in the brain (Nazem et al., 2015). Both models develop learning and memory impairments in a 

variety of tasks (including Morris water maze, novel object recognition, and Barnes maze), AD 

pathologies, and elevated neuroinflammation (Šalković-Petrišić et al., 2011; Nazem et al., 2015; 

Murtishaw et al., 2016; Murtishaw et al., in review). When STZ is administered to APP transgenic 

mice, induction of diabetes exacerbated AD symptoms including learning deficits, increased tau 
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phosphorylation, increase number of Ab plaques, increased GSK3b activity, and decreased insulin 

receptor activity (Jolivalt et al., 2010). Thus, STZ administration provides researchers with a 

translational approach to examine sporadic AD that encompasses the risk factor diabetes.  

A strong link exists between AD and diabetes, yet both disorders occur on a spectrum and 

exhibit heterogeneity in their symptomology. A feature related to both disorders that may play a 

role in exacerbating AD pathologies is chronic neuroinflammation. Determining the relationship 

between AD, diabetes, and neuroinflammation is vital to providing effective treatment in AD.   

Neuroinflammation Risk Factor 

Inflammation is a complex process that occurs in response to injury, infections, or threats 

that restores the body back to normal physiology. The CNS has a specialized immune system due 

to the protective blood-brain barrier and this system involves complex orchestrations across many 

neuronal and non-neuronal cell types (Burda and Sofroniew, 2014). The principal responders to 

damage to the CNS are glial cells (primarily microglia, oligodendrocytes, and astrocytes), which 

preserve homeostasis to allow neurons to function normally. An alteration in glial cell function 

can greatly impact neuronal synchrony and overall CNS function. Reactive gliosis, the nonspecific 

reaction glial cells to damage in the CNS, can take on different forms depending on the type of 

injury, insult, or even disease state (Sofroniew and Vinters, 2009; Burda and Sofroniew, 2014). 

Various cells types are involved in reactive gliosis that respond in different ways to an array of 

insults. For instance, acute insults initiate tissue replacement and would repair, while disperse and 

chronic diseases trigger progressive tissue changes (Burda and Sofroniew, 2014). 

Neuroinflammation is a state of chronic, sustained inflammatory response which can persist long 

after the initial injury (Z Cai et al., 2014). 
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Reactive gliosis and subsequent sustained neuroinflammation is a dynamic, complicated 

process in neurodegenerative disorders. Although many cells types and factors are involved, 

microglia have been the primary focus in AD inflammation research, as their function appears to 

be dysregulated in the disorder. Microglia serve as the main resident immune cells, making up 10 

to 15% of total cells in the CNS. These phagocytic macrophages circulate or “survey” the 

environment where they are uniformly distributed and provide signals that influences astrocytes 

and neurons (Z Cai et al., 2014). During normal, physiological conditions, microglia exhibit a 

deactivated or ramified state where they release anti-inflammatory cytokines and neurotrophic 

factors and regulate synaptic plasticity (Streit, 2002). They also participate in removing debris 

from non-neuronal apoptotic cell death (Schafer and Stevens, 2015).  

In response to injury or invasion, adenosine triphosphate dependent mechanism attracts 

microglia to the site of injury where the microglia initiate repair functions (Davalos et al., 2005; 

Haynes et al., 2006). They switch to a reactivate (or primed) state and change their chemical and 

morphological structure. Their normally protracted filopodia that allows them to monitor synaptic 

activity retract and they take on more of an amoeboid structure, compromising microglial 

regulation of network homeostasis (Van Eldik et al., 2016). They become fully phagocytic and 

release a variety of factors including pro-inflammatory cytokines, free radicals, and neurotoxins 

(Wierzba-Bobrowicz et al., 2002). The types of cytokines released and alterations of gene 

expression classify microglia generally as classically activated (M1) or alternatively activated 

(M2). M1-polarized microglia are poor phagocytes that release pro-inflammatory cytokines, 

including tumor necrosis factor - a (TNFa), interleukin (IL)-1, IL-6, IL-12, IL-18, nitric oxide, 

and prostaglandins (Malm et al., 2015). Alternatively, high phagocytosis capabilities and secretion 
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of anti-inflammatory cytokines, such as IL-10, IL-4, IL-13, and transforming growth factor-b, are 

a feature of M2-polarized microglia (Malm et al., 2015).  

Ab, NFT, and neuronal cell loss are perhaps stimulants of microglia in the AD brain. In 

the presence of Ab, microglia release chemokines (specifically C-C chemokine ligand 2) (Boddeke 

et al., 1999), which attract other microglia. In AD patients and transgenic AD mice, levels of C-C 

chemokine ligand 2 (CCL2) are increased (Oddo et al., 2003; Jankowsky et al., 2004; Janelsins et 

al., 2005) and mice that do not express its receptor (CCR2) have microglial impairments in being 

recruited to the site of Ab plaques as well as higher levels of Ab (Khoury et al., 2007; Naert and 

Rivest, 2011). A variety of cell surface recognition receptors allow microglia to detect fibrillary 

forms of Ab, including Toll-like receptors (TLRs) 2, 4, and 6, cluster of differentiation (CD) 14, 

CD 36, A1 scavenger receptors (SCARA1), and class B2 scavenger receptors (Coraci et al., 2002; 

Khoury et al., 2003; Frenkel et al., 2013). After stimulation of these receptors, various signal 

transduction pathways are activated that lead to nuclear factor kappa B (NF-kB)-dependent 

transcription of pro-inflammatory cytokines , reactive oxygen species, and phagocytosis (DR 

McDonald et al., 1998; Bamberger et al., 2003; Alarcón et al., 2005; Fang et al., 2010; Heneka et 

al., 2012). The pathophysiology of diabetes also implicates increased phosphorylation of NF-kB 

and subsequent increase in pro-inflammatory cytokines (Negi et al., 2010; Yirmiya and Goshen, 

2011; Datusalia and SS Sharma, 2014). At this point in the signaling pathway, these responses can 

have both advantageous and deleterious effects. For example, enhanced expression of SCARA1 

aids to clear Ab (Frenkel et al., 2013). Conversely, mediates pro-inflammatory production, of 

which has detrimental effects.  

Enhanced expression of pro-inflammatory cytokines have been found in AD and diabetes 

brain and CSF, including TNFa, IL-6, IL-10, and IL-1b (Blum-Degen et al., 1995; Tarkowski et 
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al., 2002; Mrak and Griffin, 2005b; H Jiang et al., 2011; Yirmiya and Goshen, 2011; Datusalia 

and SS Sharma, 2014). Chronic released of pro-inflammatory cytokines by microglia increase the 

production of Ab by favoring the toxic cleavage of APP towards g- and b- secretase (Blasko et al., 

2000; HS Hong et al., 2003; Liao et al., 2004; Malm et al., 2015). Moreover, chronic inflammation 

reduces the levels of IDE and the phagocytic capability of microglia, further perpetuating Ab 

accumulation (Chung et al., 1999; Koenigsknecht-Talboo and Landreth, 2005; Rezai-Zadeh et al., 

2011). Reactive microglia are initially beneficial to the system in response to a harmful stimulus; 

however, chronic reactive responses may amplify destructive effects.  

While the removal of these toxins is initially advantageous, a wealth of evidence 

demonstrates that the upregulation of certain immune system components may result in further 

neurodegeneration more destructive than the initial pathogenic stimulants (Akiyama et al., 2000). 

AD is a very slow process that may span 20 years between initial Ab accumulation to the 

appearance of cognitive deficits (Villemagne et al., 2013). Increased pro-inflammatory cytokines 

can increase Ab deposition and deficits in learning and memory (Games et al., 1995; Wyss-Coray 

and Mucke, 2002; Guo et al., 2002; Wyss-Coray, 2006). In a study examining P301S mutant 

human tau transgenic mice, activated microglia were detected early in neurodegeneration link tau 

abnormalities and microglia (Yoshiyama et al., 2007). Activation of inflammatory markers (TNF-

a and monocyte chemoattractant protein-1) was observed in triple transgenic (overexpressing 

APP, PS1, and tau mutations) AD mice as early as three months of age and occur alongside the 

accumulation of Ab (Janelsins et al., 2005). In cell culture studies, IL-6 and IL-1 amplify levels of 

tau hyperphosphorylation and NFT (Yuekui Li et al., 2003; Quintanilla et al., 2004; Saez et al., 

2004). As mentioned in the previous chapter, non-transgenic AD models using the diabetes risk 

factor display increased neuroinflammation. Animals given STZ exhibited increased IL-1 and 
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TNF-a in addition to microglial activation (Prickaerts et al., 1999; Y Chen et al., 2013; Murtishaw 

et al., 2016). Therefore, neuroinflammation enhances AD pathologies in postmortem brain tissue 

and animal models of AD.  

Inflammation associated with AD was initially thought to occur during end stages of the 

disorder and did not contribute to the progression of symptoms. However, data from genetic, 

preclinical, and bioinformatics studies reveal that the immune system not only accompanies but 

contributes to AD symptoms (Zhang et al., 2013). A current hypothesis implicates microglia as 

the main facilitator in neuroinflammation that contributes to and progresses AD pathology (Zheng 

et al., 2010). The most compelling research to date that links microglia with AD progression comes 

from genome-wide association studies (GWAS) in a which rare variants of several genes 

associated with microglia has been identified as a risk factors for sporadic AD (Guerreiro et al., 

2013; Jonsson et al., 2013; Bertram et al., 2013; Benitez et al., 2013; Ruiz et al., 2013; Slattery et 

al., 2014). A rare missense mutation associated with TREM2, a transmembrane receptor found in 

various tissue macrophages including microglia and bone marrow-derived macrophages, is one 

such risk factor (Daws et al., 2001; Paloneva et al., 2002; Schmid et al., 2002). Overexpression of 

TREM2 on microglia in vitro increases its ability to clear Ab (Melchior et al., 2010; T Jiang et al., 

2014) and attenuate the release of pro-inflammatory cytokines (K Takahashi et al., 2005; Turnbull 

et al., 2006; Hamerman et al., 2006). Microglia are commonly found near Ab plaques in AD mouse 

models; however, in TREM2-deficient mice, microglia are absent from Ab plaques (Ulrich et al., 

2014; Yaming Wang et al., 2015). Additional studies found that TREM2 reduces microglial 

phagocytic function and pro-inflammatory response in the presence of Ab (Hickman and Khoury, 

2014; Kleinberger et al., 2014). Another risk factor for AD discovered from GWAS is associated 

with increased CD33 expression in microglia and monocytes (Van Eldik et al., 2016). The 
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increased expression of CD33 is suggested to promote Ab42 accumulation (Griciuc et al., 2013; 

Bradshaw et al., 2013; Malik et al., 2013). As discussed in previous chapters, the ApoE4 is another 

risk factor associated with AD discovered through GWAS. Studies in microglia provide evidence 

that ApoE4 is less efficient at promoting enzyme-mediated clearance of Ab compared to ApoE3 

(Q Jiang et al., 2008). Independent of Ab, ApoE4 activate an inflammatory response that leads to 

the breakdown of the blood-brain barrier and leakage of microvasculature that releases toxic 

proteins into the brain (Bell et al., 2012). These risk factors provide a crucial link between 

microglia, Ab clearance, and sporadic AD.   

Early epidemiological studies found that individuals with arthritis had a lower rate of 

developing AD and this observation has since been correlated with the use of nonsteroidal anti-

inflammatory drugs (NSAIDs) (McGeer et al., 1990). Follow-up studies have reported that there 

is a 50% reduction in the risk of developing AD for those who are long-term users of NSAIDs 

(Wyss-Coray, 2006). The main targets of NSAIDs are cyclooxygenase (COX-1) and COX-2 where 

they act by inhibiting key inducers of inflammation (prostaglandins and thromboxanes) (Wyss-

Coray, 2006). With respect to AD, alternative targets of NSAIDs have been examined including 

peroxisome proliferator-activated receptor-g (PPAR-g) and the presenilins. In cell culture, PPAR-

g reduces Ab levels by inhibiting the activity of b-secretase cleaving enzyme 1 (BACE1) promotor, 

which the enzyme that metabolizes APP into the pathogenic form (Sastre et al., 2006). Studies 

using cell culture and APP transgenic mice have found reductions in Ab levels with different 

NSAIDs that have varying affinity for COX and alternative targets (Weggen et al., 2001; Eriksen 

et al., 2003; Y Takahashi et al., 2003; Lleó et al., 2004; Beher et al., 2004; Gasparini et al., 2004). 

One particular NSAIDs (R-flurbiprofen or Flurizan™) did exceptionally well in Phase I and II 

trials, where it slowed functional and cognitive decline in AD patients for up to 21 months of 
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treatment yet failed to show any beneficial changes in several Phase III trials (RC Green et al., 

2009). Overall, these studies suggest that the downstream targets of NSAIDs may be acting upon 

Ab or Ab precursors but not necessarily on directly reducing inflammation that is chronically 

activated in AD.  

As mentioned, microglia respond to and proliferate towards chemokines. The soluble form 

of a chemokine, called fractalkine or CX3CL1, mediates microglial chemoattraction 

(Maciejewski-Lenior et al., 1999). Exogenous application of CX3CL1 results in increased 

microglial proliferation, as they express the fractalkine receptor CX3CR1 (Hatori et al., 2002). 

Insufficient signaling of CX3CL1/R1 leads to an enhanced microglial inflammatory response, as 

demonstrated by mice lacking functional CX3CR1 receptors (Cardona et al., 2006). For example, 

APP/PS1 mice lacking functional CX3CR1 showed increased levels of TNFa and IL-1b (S Lee et 

al., 2017). Methods to reduce chronic microglia proliferation in AD models would be useful to 

understanding the disorder. In particular, baclofen (a GABAB receptor agonist) has been found to 

reduce pro-inflammatory cytokine release in peripheral leucocytes that express CX3CR1 (Duthey 

et al., 2010) and microglia cell cultures (Kuhn et al., 2004). Not only can GABAB receptors lead 

to inhibition of microglia via the neurotransmitter GABA but it has suggested that they can also 

interfere with microglial chemotaxis through chemokine receptors (Duthey et al., 2010). 

Therefore, outlining the role of GABAB inhibition on microglia may aid in our understanding of 

neuroinflammation in AD.  

 

GABAB Signaling in Alzheimer’s Disease and Neuroinflammation 

Multiple neurotransmitter systems are implicated in the progression of AD, including 

acetylcholine, dopamine, glutamate, monoaminergic systems, and GABA (Francis et al., 1999; 
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Iwakiri et al., 2005; Yanfang Li et al., 2016). However, GABA signaling on microglia may serve 

a role in reducing neuroinflammation and subsequently halt the progression of AD symptoms.  

  Gamma-aminobutryic acid (GABA) the main inhibitory neurotransmitter in the brain and 

is synthesized from glutamate in neurons expressing glutamic acid decarboxylase (GAD). Two 

main classes of GABA receptor systems exist: GABAA and GABAB. GABAA receptors are 

ionotropic and permeable to chloride. Activation of these receptors leads to a quick-onset 

hyperpolarization (Macdonald and Olsen, 1994). GABAB receptors are metabotropic Gi/Go 

coupled receptors located pre- and postsynaptically (Bettler et al., 2004), where they function to 

regulate ion channels by either activating potassium channels or inhibiting calcium channels 

(Gassmann and Bettler, 2012). Furthermore, GABAB receptor modulates GABA and glutamate 

neurotransmitter release and reduces depolarization induced by excitatory neurotransmitters 

(Bettler et al., 2004). In neurons, GABAB plays a large role in regulating oscillatory activity 

necessary for cognition and learning and memory (Gaiarsa et al., 2011).  

A growing body of literature illustrates the role of GABA in regulating inflammatory 

responses and suggests that GABA induces a neuroprotective phenotype in microglia (Mead et al., 

2012). Microglia express functional GABAB receptors in culture and in vivo (Kuhn et al., 2004; 

Liu et al., 2016). Studies demonstrate that microglia can modulate pro-inflammatory cytokine 

release in response to GABA concentrations. For example, GABAB receptor agonists activate 

outward rectifying potassium channel conductance in microglia and reduce the release of pro-

inflammatory cytokines IL-6 and IL-12p40 (Kuhn et al., 2004). Furthermore, GABAB receptors 

are increased on microglia in response to injury (Kuhn et al., 2004). As mentioned in the previous 

chapter, GABAB receptors might be able to alter chemotaxis of microglia. For example, baclofen 

reduces the migration of CX3CR1 containing peripheral blood monocytes towards CX3CL1 by 
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70% (Duthey et al., 2010). CX3CR1 are also G protein coupled receptors. It is proposed that the 

Gi protein associated with GABAB receptors may interfere and inhibit the function of pro-

inflammatory CX3CR1 linked to the Gi signaling pathway through heterologous desensitization 

(Duthey et al., 2010). Taken together, GABAB receptors may serve to regulate microglia activity 

in times of stress.    

In AD, GABAergic signaling undergoes profound pathological changes in AD resulting in 

decreased neurotransmission and neuronal receptor expression (Iwakiri et al., 2005; Yanfang Li et 

al., 2016). Conflicting data exist over the altered expression of various GABAA receptor subtypes 

in brain samples from AD patients (Yuan and Shan, 2014). However, a correlation exists between 

the reduction GABAB receptor expression and AD pathologies in AD brains (Iwakiri et al., 2005).  

Together these data suggest that a reduction in GABAergic tone in AD may compromise 

an important anti-inflammatory pathway via GABAB receptor function on microglia and possibly 

exacerbate progression of AD. As of yet, there are no studies outlining the effect of GABAB 

receptors on microglia in AD.  

Experimental Hypotheses and Implications 

 The purpose of this study is to examine the role of GABAB receptors on neuroinflammation 

in a rodent model of sporadic AD that encompasses the diabetes risk factor. A considerable amount 

of data exists examining AD pathologies in transgenic rodent models. However, these models 

recapitulate genetic manipulations that are only observed in familial AD patients (1-5% of AD 

population). Inducing a diabetic-like state in an animal model that displays AD pathologies and 

neuroinflammation is a valid, translational approach in examining mechanisms of the disorder.  

 Since it has been demonstrated that GABAB receptor activation on microglia reduces pro-

inflammatory cytokines and neuroinflammation, we propose to investigate their role in a diabetes 
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animal model of AD examining behavior and brain tissue. To induce a diabetic-like state, we 

administered STZ at 40 mg/kg (intraperitoneal) to C57BL/6J mice using a staggered protocol 

similar to the schedule of administration from our laboratory that results in sustained, elevated 

blood glucose levels with zero mortality (Murtishaw et al., in review). When mice reached a group 

average of 250 mg/dL blood glucose level (indicative of a diabetic state; (Atkinson, 2011), the 

GABAB receptor agonist (baclofen, 2 mg/kg, intraperitoneal) administration began. This dose was 

selected based on previous behavioral experiments in our laboratory as well as studies indicating 

that baclofen can induce lethargy, significantly decrease muscle tone, and alter eating behavior at 

higher doses (Patel and Ebenezer, 2010; Heaney et al., 2012; Heaney and Kinney, 2016). Baclofen 

was administered for two weeks, twice a day to ensure that the drug is chronically activating 

GABAB receptors. It should be noted that pancreatic beta cells contain GABAB receptors which 

are involved in insulin production and studies demonstrate that baclofen produces an increase in 

insulin release in these cells (Brice et al., 2002). Although baclofen may enhance the efficiency of 

remaining pancreas beta cells, it cannot reverse the effects of STZ-induced pancreatic beta cell 

death.  

Behavioral tests commenced after a drug washout period to make certain that active 

baclofen will not contributing to behavior. The open field test was performed to examine anxiety 

phenotypes. To assess learning and memory, exploratory behavior in the novel objection 

recognition test (NOR) was measured. Animal models of AD consistently show deficits in 

exploring novel objects in this task, suggesting learning and memory deficits (Antunes and Biala, 

2012; Murtishaw et al., 2016; Murtishaw et al., in review). To investigate associative learning, 

freezing behavior was measured in the cued and contextual fear conditioning test. Components of 
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this task can reveal hippocampal dysfunction (Maren et al., 2013), the first region of neuronal loss 

in AD (Padurariu et al., 2012). Finally, nociceptive differences were tested in the tail flick test. 

 To investigate protein and mRNA changes in the hippocampus and cortex consistent with 

those seen in AD and neuroinflammation, protocols including western blotting, 

immunohistochemistry, and RT-PCR were performed on brain tissue. Targets outlined in Table 1 

were analyzed via western blotting and involve AD related pathological targets (phosphorylated 

tau and Aβ oligomers), a major protein involved in insulin signaling (IDE), and GABAB receptor 

subunits. Activated microglia and microvascular hemorrhages associated with AD were assessed 

via immunohistochemistry. Pro-inflammatory and anti-inflammatory cytokine (outlined in Table 

2) mRNA expression were measured with RT-PCR.  

Hypothesis 1:  

Administration of STZ will lead to behavioral and biochemical changes associated with 

AD.   

 Implications for Hypothesis 1: If administration of STZ leads to behavioral and  

biochemical changes associated with AD, then these data highlight the link between 

insulin dysregulation and its contribution to the progression of AD pathology.   

 Hypothesis 2:  

Chronic activation of GABAB receptors (via baclofen administration) in a diabetes model 

will attenuate neuroinflammation leading to a rescue in behavioral and biochemical 

changes associated with AD.  

 Implications for Hypothesis 2: If deficits in behavior and changes related to AD  

pathology and neuroinflammation in brain tissue induced by STZ administration  

are rescued by chronic baclofen administration, these data would suggest that  
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GABAB receptor activation modulates neuroinflammatory processes.  
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CHAPTER 3 

MATERIALS AND METHODS 

Subjects 

Sample size to determine the number of subjects was calculated a prior using power 

analysis software, G Power (Faul et al., 2007). Using previously collected data our laboratory 

(Murtishaw et al., in review) with power was set at 0.80 and a = 0.05 (two-tailed), sample size 

was calculated at n = 4 per treatment group. To sufficient power for each of the three tissue 

analyses, n = 12 per treatment group was determined (n = 48 total animals used).   

C57BL/6J mice (Jackson Laboratory) were housed six per cage by treatment group (STZ 

or non-STZ). The mouse colony room was on a 12:12 light/dark cycle and mice had access to 

standard chow and water available ad libitum. Behavioral tests were conducted during the light 

cycle. All procedures were approved by the University of Nevada, Las Vegas Institutional Animal 

Care and Use Committee and were performed in accordance with NIH guidelines for the care and 

use of laboratory animals.  

Drugs Treatments 

Mice were randomly assigned to STZ, STZ + baclofen, baclofen alone, or control group (n 

= 12 per group). STZ (Sigma-Aldrich) was prepared immediately before use by dissolving in 

filtered 0.1 M sodium citrate buffer (pH 4.5) for a final concentration of 4 mg/mL, as STZ is 

pharmacologically active for 15 minutes before a fresh batch needs to be prepared (Schein et al., 

1973). Baclofen (Sigma-Aldrich) was dissolved in pharmaceutical grade saline (.9% NaCl) for a 

final concentration of 0.2 mg/mL. 
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Apparatus 

Open Field and Novel Object Recognition Chamber 

 Plexiglas chambers (37 cm L x 37 cm W x 37 cm H) with white interior was used for both 

the open field and the novel object recognition tasks. Objects for the novel object recognition task 

include a yellow semicircle (7.5 cm D x 3.5 cm H), green rectangular pyramid (7.5 cm L x 7.5 cm 

W x 7.5 cm H), red pyramid (8 cm L x 7 cm W x 6 cm H), and blue semi cylinder (7.5 cm L x 7.5 

cm W x 3.3 cm H). Noldus EthoVision XT (Version 11.5) measured the velocity, time spent in the 

perimeter (10 centimeters from the wall), and amount time investigating objects (calculated when 

the animal’s nose is four centimeters from the object).     

Fear Conditioning Chambers 

 For training and contextual day, two Freeze Monitor chambers (San Diego Instruments) 

measuring 25.4 cm (L) x 25.4 cm (W) x 19.05 cm (H) with stainless steel grid floors and Plexiglas 

walls was used. At the end of each session, chambers were cleaned with 50% Formula 409® 

(Chlorox). For cued fear, two chambers measuring 43.18 cm (L) x 12.7 cm (W) x 26.67 cm (H) 

with opaque walls and an added scent of vanilla was used to ensure a different visual and olfactory 

context. After each session, a solution of 10% ethanol was used to clean the chambers. To operate 

the chambers, they were connected to a computer running Freeze Monitor software (San Diego 

Instruments) and freezing behavior were recorded using Noldus EthoVision XT (Version 11.5) 

automated software.   

Tail Flick 

 Water in a 100 mL beaker was heated and maintained at 48 degrees Celsius on a heat plate. 

A Sony Handycam was used to record behavior during the task and independent observers blind 
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to treatment groups measured the amount of time it took for the animal to flick the distal ¼ portion 

of their tail out of the hot water bath.     

Drug Administration 

Induction of Diabetes  

Freshly prepared STZ was administered via intraperitoneal injection at a volume of 0.1 

mL/10 g to achieve a concentration of 40 mg/kg. Control mice were administered vehicle (citrate 

buffer) via intraperitoneal injection at a volume of 0.1 mL/10 g. Continual monitoring of blood 

glucose levels during STZ injections determined the timing and number of administrations, along 

with data from previous work in our laboratory (Murtishaw et al., in review). Animals were 

injected on days 1, 2, 3, 14, 15, 35, and 44 (the first day of STZ injections is Day 1). After STZ or 

citrate buffer vehicle administration, all animals were given 10% Ensure® (Abbott Laboratories) 

mixed in their water for 24 hours to counteract initial hypoglycemia due to insulin release from 

destroyed pancreatic beta cells (Szkudelski, 2001).  

During the experiment, blood glucose levels were monitored to confirm that the animals 

reached an elevated and sustained diabetic state. To measure blood glucose levels, lateral tail vein 

blood was collected after two hours of fasting. While gently restraining the animal, the withdrawal 

site was cleaned with alcohol. Using a sterile scalpel blade, lateral tail vein was nicked to obtain a 

small droplet of blood. AlphaTrak® Blood Glucose Monitoring System measured blood glucose 

levels. After the blood sample is obtained, gentle pressure was applied to the tail to stop the 

bleeding. Baseline measurements were collected a week before STZ injections. Measurements of 

blood glucose and weights were taken twice a week after injections begin. A reading of 250 mg/dL 

is considered hyperglycemic and equivalent to a diabetic state in mice (Atkinson, 2011). Baclofen 

treatments began when the STZ average blood glucose levels reached 250 mg/dL.   
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Baclofen treatment 

Mice received either baclofen (0.2 mg/mL) or saline vehicle at an injection volume of 0.1 

mL/g (intraperitoneal) to achieve a final concentration of 2 mg/kg. Injections were given twice 

daily (10 hours apart) for two weeks to maintain consistent activation of GABAB receptors 

throughout treatment. During the baclofen treatment, blood glucose was monitored twice a week.  

Behavioral Testing 

All behavioral tests were performed in a testing room separate from the colony room. 

Unless otherwise noted, behavior was tracked using an automated tracking system (Noldus 

EthoVision, Version 11.5). Behavioral testing began 36-hours after final baclofen injection to 

ensure complete metabolism of the drug.  

Open Field Task 

To assess anxiety phenotypes, behavior in the open field task was examined. Animals were 

be taken from the colony room and individually placed in the open field chambers located in a 

separate testing room. They were allowed to explore the chambers for five minutes while their 

activity (velocity, time spent in walls, and time spent in center) was recorded via the tracking 

system. At the end of the trial, animals were removed from the chambers and placed back in their 

home cage in the colony room. Chambers were cleaned with 10% ethanol solution before the next 

session.  

Novel Object Recognition (NOR) 

NOR is a widely used model to investigate memory alterations using a rodent’s innate 

exploratory behavior (Antunes and Biala, 2011). Twenty-four hours following the open field task, 

novel object recognition was performed. On Day 1, a pair of identical objects (either yellow 

semicircles, green rectangular pyramids, red pyramids, or blue semi cylinders were used and 
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counterbalanced across subjects) were placed in two corners of each chamber. Animals were given 

five minutes to explore the chamber and objects while the tracking system recorded the amount of 

time spent with each object. On Day 2 (twenty-four hours later), one of the objects from Day 1 

was replaced with a new object (novel object). During the five-minute trial, the tracking system 

measured the amount of time spent with the familiar and the novel object. Animals were removed 

at the end of the session and placed back in their home cage. Chambers were cleaned with 10% 

ethanol solution after each trial on each day.    

Cued and Contextual Fear Conditioning 

 To assess associative learning abilities, animals were trained and tested in a fear 

conditioning task. Twenty-four hours following Day 2 of novel object recognition, trace fear 

conditioning training began. Animals were individually placed in a testing chamber attached to the 

Freeze Monitor system. After two minutes of acclimatization in the testing chamber, a 2.9 kHz 88 

dB tone conditioned stimulus (CS) was presented for 30 second. At the cessation of the tone, a 4 

second delay occurred before the administration of a 1 second 0.3 mA foot shock (unconditioned 

stimulus; US). A total of four CS-US pairings was presented and separated by a two-minute 

interval. Freezing behavior was monitored during the first and last two minutes of the trial using 

the automated tracking system. After the session, animals were taken back to their home cage and 

the chamber was cleaned with 50% Formula 409® (Chlorox) solution.  

 Cued fear conditioning took place in an altered context chamber twenty-four hours after 

training. Animals were individually placed in a chamber and freezing behavior was continuously 

monitor by the automated tracking system. After two minutes in the chamber, the original CS tone 

was presented for 30 s every two minutes for a total of four presentations. At the end of the trial, 
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animals were taken back to their home cage and the chambers cleaned with 10% ethanol solution 

to ensure a different olfactory cue than on training day.  

 Contextual fear took place in the original training chamber twenty-four hours following 

cued fear. Animals were individually placed in the chambers and allowed to explore for ten 

minutes without any CS or US presentations. Freezing behavior was continually monitored by the 

automated tracking system and data binned into two minute intervals. Following the session, 

animals were placed back in their home cage and the chamber was cleaned with 50% Formula 

409® (Chlorox) solution.  

Tail Flick 

 To assess differences in nociception, the tail flick procedure was performed twenty-four 

hours after the last day of fear conditioning. Animals were taken into a separate room with a beaker 

of hot water (48 degrees Celsius). The last one-fourth portion of each animal’s tail was placed in 

the hot water bath and the latency with which the animal flicks its tail out of the hot water was 

recorded.  

 

Figure 1 Timeline of Experiment 
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Tissue Examination 

Tissue collection 

Animals were randomized within treatment groups for RT-PCR, western blotting, and 

immunohistochemistry tissue processing prior to tissue collection (n = 4 per procedure per 

treatment group). All animals will be humanely euthanized with carbon dioxide asphyxiation prior 

to transcardial perfusion of ice cold physiological saline. For RT-PCR and western blotting, brains 

were rapidly removed, the hippocampus and cortex dissected out, and flash frozen with liquid 

nitrogen before being stored in -80 degrees Celsius. For immunohistochemistry, 4% 

paraformaldehyde (PFA) solution was perfused following ice cold saline, whole brains were 

removed, and placed in to a vial of additional 4% PFA.  

SDS-PAGE Western Blotting 

 To examine protein expression of various targets outlined in Table 1, sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) Western blotting procedure was 

performed. Hippocampal and cortex tissue was homogenized using Bio-Plex® Cell Lysis Kit (Bio-

Rad), POLYTRON® homogenizer (Kinematica), a 24-hour -80-degree Celsius freeze/thaw, and 

sonication (Sonifer SFX150, VWR). Following sonication, samples were centrifuged at 4500 x g 

for 15 minutes and supernatant removed. Protein concentration was determined using Pierce® 

BCA Protein Assay Kit (Thermo Fisher Scientific). Samples (20 µg) were separated on 10% SDS-

PAGE gels and electro-transferred onto PVDF membranes (Immunobilon-FL, 0.45 micron; 

Millipore). Following blocking with Odyssey Blocking Buffer (LI-COR), membranes were probed 

with primary antibodies (see Table 1).  
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  After overnight incubation of primary antibodies on a shaker in 4 degree Celsius and 

subsequent washes, membranes were probed with fluorescence-based secondary antibodies (LI-

COR). After incubation and washes, membranes were imaged and analyzed using Odyssey® 

Infrared Imaging System (LI-COR) running Image Studio Software® (LI-COR). All proteins of 

interest were normalized to b-actin with the exception of the phosphorylated proteins (pTau and 

pGSK3b) which was normalized to the total protein (Tau and GSK3b, respectively).  

Table 1 SDS-Page Western Blotting Antibodies 

Antibody Description 

b-actin (1:20000; ProteinTech) Control antibody probed on the same 
membrane has proteins of interest as a loading 
control and will be used to normalize due to 
its stability across treatment manipulations.  

IDE (Insulin degrading enzyme; 1:1000; 
Abcam) 
 

Degrades Ab and insulin.  

GABABR1 (1:1000; Cell Signaling 
Technology) 

Obligatory GABAB receptor subunit that 
binds ligands. Antibody detects both pre- and 
post-synaptic isoforms of the receptor (1a and 
1b).  

GABABR2 (1:750; Cell Signaling 
Technology)  

Obligatory GABAB receptor subunit coupled 
to G proteins.   

GSK3b (1:1000; Cell Signaling Technology)  Kinase involved in phosphorylating tau.  

Phosphorylated GSK3b (1:1000; Cell 
Signaling Technology)  

Inactive form of GSK3b.  

Ab oligomers (1:1000; Abcam) Detects total oligomeric species of Ab. 

Tau (1:1000; Abcam) Detects total tau protein levels. 

Phosphorylated Tau (Serine 396; 1:1000; 
Santa Cruz Biotech) 

Detects levels of tau phosphorylated at serine 
396 and will be compared against total tau 
levels (pTau/Tau).  
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Immunohistochemistry 

Cortex and hippocampal coronal sections (15 µm thick) was sectioned on a cryostat 

(Hacker-Bright OTF5000) and stored free floating in 1xPBS at 4 degrees Celsius in plastic 12-

well plates.  

For staining to examine activated microglia, a procedure using the Iba1 antibody and 3,3’-

Diaminobenzidine tetrahydrochloride counterstain was used. Sections were blocked in 5% normal 

goat serum for 45 minutes then incubated overnight at 4 degrees Celsius in Iba1 antibody (Wako). 

The following day, sections were washed in 1xPBS (5 x 5 minutes) and incubated for 30 minutes 

with diluted biotinylated secondary antibody (ABC Kit; Vector Labs). After another 5 x 5 minute 

washes in 1xPBS, sections were incubated for 30 minutes with VECTASTAIN® ABC Reagent 

(ABC Kit; Vector Labs). Following a set of 5 x 5 minute washes, sections were stained with DAB 

(Sigma-Aldrich) diluted in 1xPBS and 0.03% hydrogen peroxide until color develops. Sections 

were immediately be washed in 1xPBS, mounted on slides, and cover-slipped.  

To examine microhemorrhages, the Prussian blue staining procedure was followed. 

Sections from the hippocampus and cortex were slide mounted and air dried overnight. The 

following day, sections were briefly rehydrated in water for 30 seconds, followed by incubation in 

freshly prepared 5% potassium ferrocyanide (Sigma Aldrich) and 5% hydrochloride acid (Sigma 

Aldrich) for 30 minutes. Following 5 x 5 minute washes in water, sections were counter stained in 

filtered 1% nuclear fast red solution for 5 minutes. Following 3 x 1 minute washes in water, 

sections were quickly dehydrated in succession of two dips in 95% ethanol, 100% ethanol, then 

xylene. Sections were then immediately covered-slipped. 

Images at 20x objective were taken of the cortex and hippocampus using a Zeiss Axioskop 

II Plus microscope (Carl Zeiss MicroImaging, Inc.). Two independent experimenters blind to the 
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treatment groups counted the cells expressing the Iba1 from the DAB counterstain and, separately, 

the microhemorrhages from the Prussian blue staining were counted.  

RT-PCR 

 To examine messenger RNA (mRNA) expression of pro- and anti-inflammatory cytokines 

associated with neuroinflammation (see Table 2) in hippocampal and cortex tissue, reverse 

transcriptase polymerase chain reaction (RT-PCR) was performed. mRNA was extracted from 

hippocampal and cortex tissue using RNeasy Mini Kit (Qiagen). mRNA concentration and quality 

was determined using a full spectrum spectrophotometer (NanoDrop 1000). Equal concentrations 

of mRNA per sample were reverse transcribed using QuantiNova Reverse Transcription Kit 

(Qiagen) in triplicates on Bio-Rad® C1000 Touch Thermal Cycler. Each sample of cDNA 

triplicate were run in triplicate with SsoAdvanced Universal SYBR Green Supermix (Bio-Rad) 

using Bio-Rad® CFX96 Real-Time PCR Detection System. The thermal cycling protocol was 

followed according to the recommended master mix instructions and as follows: 30 seconds at 95 

degrees Celsius (polymerase activation and DNA denaturation) then amplification consisting of 

15 seconds at 95 degrees Celsius (denaturation) and 30 seconds at 60 degrees Celsius 

(annealing/extension with plate read) for 40 cycles. Melt-curve analysis were performed following 

amplification at 65-95 degrees Celsius with a 0.5 degree increment every 5 seconds.  
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Table 2 RT-PCR Primer Targets 

Target Accession Number Description 
b-actin NM_007393.5 Control/normalizing housekeeping gene 

(Stephens et al., 2011).  
GAPDH (glyceraldehyde 3-
phosphate dehydrogenase) 

NM_008084.3 Control/normalizing housekeeping gene 
(Stephens et al., 2011). 

HPRT1 (hypoxanthine 
guanine phosphoribosyl 
transferase 1) 

NM_013556.2 Control/normalizing housekeeping gene 
(Stephens et al., 2011). 

TNF a (tumor necrosis 
factor alpha) 

NM_013693.3 Pro-inflammatory cytokine released by 
microglia and suggested to be elevated 
in AD (Bhaskar et al., 2014). 

IL-6 NM_031168.2 Pro-inflammatory cytokine released by 
glial cells and elevated in AD (Hüll et 
al., 1996). 

IL-1b NM_001513.1 Pro-inflammatory cytokine released by 
glial cells, elevated in AD, and 
implicated in vascular dementia (V 
Sharma, 2011). 

IL-1a NM_010554.4 Pro-inflammatory cytokine released by 
glial cells and elevated in AD (Rainero 
et al., 2004). 

IL-10 NM_010548.2 Anti-inflammatory cytokine released by 
glial cells. Reduction in IL-10 attenuates 
AD pathology (Guillot-Sestier et al., 
2015) 

 

Statistical Analyses  

Differences in blood glucose and body weights were analyzed by one-way between 

subjects analysis of variance (ANOVA) with group as the factor.  

Open field data using time spent (in seconds) in the border was analyzed by one-way 

between subjects ANOVA with group as the factor.  

Time spent investigating objects in Day 1 NOR was analyzed by one-way between subjects 

ANOVA with group as the factor. Time spent investigating the novel object over total time spent 
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investigating both novel and familiar objects in Day 2 NOR was compared using a Student’s t-test 

against chance (50%) for each treatment and control group.  

Time spent freezing in each day of CCF was analyzed by one-way between subjects 

ANOVA with group as the factor. Specifically, on CCF Training Day, only the first 120 seconds 

and the last 120 seconds was analyzed. Further, a Student’s t-test for each treatment and control 

group was performed comparing freezing during the first 120 seconds versus the last 120 seconds. 

On CCF Cued Day, the trial was divided into the following portions to analyze differences in 

freezing across the session: first 120 seconds, during cue 1, post cue 1, during cue 2, post cue 2, 

during cue 3, post cue 3, during due 4, and last 120 seconds. Finally, on CCF Contextual Day, 

freezing during two minute bins was analyzed.  

Western blotting data was analyzed by initially normalizing the protein of interest band to 

the control band (b-actin) or the phosphorylated form of the protein to the total protein (pTau/Tau 

or pGSK3b/GSK3b). Following normalization, proportion to control was determined by averaging 

all of the normalized control samples per membrane and setting the treatment subjects values over 

the averaged control values. Finally, the proportion to control for each sample was analyzed by 

one-way between subjects ANOVA with group as the factor.  

Immunohistochemistry cell counts were analyzed by one-way between subjects ANOVA 

with group as the factor.  

RT-PCR data were analyzed using threshold cycle value (Ct) normalized to housekeeping 

genes. Differences in the change of Ct (DCt) for experimental groups and control conditions were 

examined. DCt were analyzed by one-way between subjects ANOVA with group as the factor.  
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Tukey post-hoc comparisons of treatment groups was performed following any significant 

ANOVA to determine group significance.  
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CHAPTER 4 

RESULTS 

Induction of Diabetes 

Blood Glucose Levels 

 Confirmation of a diabetic state was made measuring blood glucose levels before STZ 

administration and twice a week after the first injection. The initial injection schedule was based 

on data from our laboratory (40 mg/kg STZ on day 1, 2, 3, 14, and 15; Murtishaw et al., in review) 

and additional two injections were required to achieve a group average of 250 mg/dL (Figure 2). 

Before the start of the STZ injections, the four groups had equivalent blood glucose measurements 

(F(3,44) = 0.8587, p = 0.4696). Significant increase blood glucose levels for both groups receiving 

STZ compared to controls began on Post Injection Day 17 (F(3,44) = 13.612, p = 0.000; Tukey post-

hoc analysis: Control versus STZ, p = 0.000; Control versus STZ Bac, p = 0.001). Both the STZ 

and STZ Bac group had significantly increased blood glucose levels across days before the 

beginning of the baclofen injections (Post Injection Day 6 through Post Injection Day 48; F(3,44) = 

43.386, p = 0.000; Tukey post-hoc analysis: Control versus STZ, p = 0.000; Control versus STZ 

Bac, p = 0.000). The baclofen injections resulted in a significant decrease in blood glucose levels 

in the STZ versus STZ Bac group (F(3,44) = 118.283; STZ versus STZ Bac, p = 0.000). However, 

the both the STZ and STZ Bac groups were significantly elevated compared to controls (F(3,44) = 

118.283, p = 0.000; Tukey post-hoc analysis: Control versus STZ, p = 0.000; Control versus STZ 

Bac, p = 0.000). Notably, no differences were observed between the controls and baclofen alone 

group (Controls versus Bac, p = 0.952). After the baclofen injections, blood glucose levels for both 

STZ administered groups remained elevated compared to saline (F(3,44) = 94.495, p = 0.000; Tukey 

post-hoc analysis: Control versus STZ, p = 0.000; Control versus STZ Bac, p = 0.000). Although 
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significantly elevated compared to saline, the STZ Bac group was significantly decreased 

compared to the STZ alone group (Tukey post-hoc analysis: p = 0.019). In short, STZ 

administration led to significantly elevated blood glucose measurements across days. Baclofen 

was able to decrease measurements in the STZ animals, suggesting its actions enhancing 

pancreatic beta cell function. However, the group averages for STZ Bac were still elevated 

compared to controls and baclofen alone.  

 

Figure 2 Blood Glucose Measurements. Mean blood glucose levels (± SEM) were 
significantly increased due to STZ administration. * = significantly different compared to 
controls (p < 0.05). # = significantly different compared to STZ Bac (p < 0.05).  

 

 

Body Weight  

 Body weights were recorded throughout the experiment to observe changes due to drug 

treatment. No differences were seen between groups with mean baseline body weight before 

injections began (Figure 3; F(3,44) = 0.302, p = 0.824). Similarly, no effect of treatment on body 

weights were observed during the STZ administration (F(3,44) = 0.281, p = 0.839), during baclofen 
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injections (F(3,44) = 0.533, p = 0.662) , or at the completion of the experiment (F(3,44) = 0.524, p = 

0.668). Therefore, the drug treatments in this experiment did not influence body weight.      

 

Figure 3 Body Weight Measurements. No significant differences in body weights (± SEM) 
were observed across the experiment.  

 

 

Behavioral Testing  

Open Field 

 The open field test was performed to assess anxiety phenotypes or locomotor changes that 

may manifest due to treatment. Time spent in the perimeter of the chamber was measured as well 

as velocity and distance travelled during the five-minute session. Although the averages for 

velocity (Figure 4B; F(3,44) = 0.483, p = 0.696) and total distance travelled (Figure 4C; F(3,44) = 

0.482, p = 0.697) are not statistically significant between treatment groups compared to controls , 

the STZ group displayed a trend towards significant increase in time spent in the perimeter of the 

chamber (Figure 4A; F(3,44) = 2.716, p = 0.056).  
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Figure 4 Open Field Data. No significant differences were observed for mean time spent (± 
SEM) in the perimeter of the chamber (A), velocity measured during the trial (B), or distance 
travelled (C). 

 

 

Novel Object Recognition 

 To evaluate learning and memory differences between treatment groups, the NOR test was 

performed. This task utilizes the rodents’ innate preference for novelty to measure memory 

abilities. On Day 1 of NOR, groups spent equivalent percent time with both of the identical objects 

(Figure 5A; F(3,44) = 1.094, p = 0.362) and displayed no differences in velocity (Figure 5B; F(3,44) 

= 0.805, p = 0.498) and distance travelled (Figure 5C; F(3,44) = 0.805, p = 0.498).  
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Figure 5 Day 1 Novel Object Recognition Data. A No differences were observed in percent 
time exploring both objects (± SEM). Mean velocity (± SEM; B) and distance travelled (± SEM; 
C) were equivalent between groups.  

 

 

On the following day, the novel object was introduced. Control and baclofen-treated (Bac) 

animals spent more time with the novel object, as revealed by a significant discrimination index 

for each group (Figure 6A; Control: t(11) = 2.572, p = 0.026; Bac: t(11) = 4.551, p = 0.001). The STZ 

group spent equal time with both objects (t(11) = 0.345, p = 0.737), indicating a lack of object 

recognition. Treatment with baclofen reversed this deficit, similar to what was observed in the 

control group and baclofen alone (STZ Bac: t(11) = 2.529, p = 0.028). No differences observed in 

velocity (Figure 6B; F(3,44) = 0.598, p = 0.62) and distance travelled (Figure 6C; F(3,44) = 0.568, p 

= 0.639). Therefore, insulin dysregulation induced by STZ administrations led to memory 

impairments that was attenuated by baclofen treatments.   
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Figure 6 Day 2 Novel Object Recognition Data. A Control, Bac, and STZ Bac spent 
equivalently more time with the novel object than the familiar object. The STZ group spent equal 
time with the novel and familiar objects. No differences were found with average velocity (± SEM; 
B) and distance travelled (± SEM; C). # = significantly greater than chance levels (p < 0.05). 

 

 

Cued and Contextual Fear Conditioning  

 Associative fear learning was assessed in the CCF task. During training on Day 1, freezing 

behavior was measured during the first 120 seconds (before the four CS-US pairings; Pre CS-US) 

and the last 120 seconds (after the four CS-US pairings; Post CS-US). No differences in freezing 

was observed between the treatment groups (Figure 7; Pre CS-US: F(3,44) = 1.233, p = 0.309; Post 

CS-US: F(3,44) = 0.447, p = 0.72). The amount of freezing significantly increased from Pre CS-US 

to Post CS-US within each treatment group (Figure 7; Control: t(11) = 14.895, p = 0.000; Bac: t(11) 

= 9.603, p = 0.000; STZ: t(11) = 11.27, p = 0.000; STZ Bac: t(11) = 15.722, p = 0.000), indicating 

that the CS-US pairings elicited fear behavior equally between all groups.  
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Figure 7 CCF Training Data. Mean percent freezing (± SEM) during the first 120 seconds 
before the CS-US pairings (Pre CS-US) and the last 120 seconds following the four CS-US 
pairings (Post CS-US). No differences were found between groups for both portions of the trial. 
Significantly increased freezing within all groups was observed comparing the Pre CS-US with 
Post CS-US (p < 0.05).  

 

 

 To examine if a learned association to the cue was made, the cue was presented in the 

altered context (Cued Fear) the following day. Freezing was measured before the presentation of 

the cue (Pre CS), during the condition stimuli (CS 1, CS 2, CS 3, and CS 4), and after the 

presentations of the cues (Post CS). No differences in freezing was observed during the first 120 

seconds before the presentation of the first cue (Figure 8; F(3,44) = 0.965, p = 0.418), indicating a 

lack of fear response to the altered context. Across the entire session, the STZ group displayed a 

significant increase in freezing during the cues compared controls (Figure 8; repeated measures 

ANOVA across cues, F(1,22) = 4.87, p = 0.038). Specifically, post-hoc analysis revealed that STZ 

displayed significant freezing during CS 2 (F(3,44) = 4.405, p = 0.009; Tukey post-hoc analysis: 

Control versus STZ, p = 0.009).  
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Figure 8 CCF Cued Fear Data. Mean percent freezing (± SEM) in the Cued Fear portion of 
CCF. A. Freezing before, during, and after cue presentations (CS 1, CS 2, CS 3, and CS 4). No 
differences in freezing before the presentations of cues. STZ displayed elevated freezing during 
the cues using repeated measures analysis (B.). * = significantly different (p < 0.05) compared to 
controls. 

 

 

 To test for a learned contextual fear association, the animals were placed back into the 

original training chamber and freezing behavior was measured. Across the ten minute session, no 

differences in freezing behavior was observed between groups (Figure 9; F(3,44) = 0.346, p = 0.792), 

suggesting a lack of difference in the learned association to the context. 

 

Figure 9 CCF Contextual Fear Data. Mean percent freezing (± SEM) in the original context 
in which the animals were shocked No differences in freezing between treatment groups was 
observed. 
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Tail Flick 

 The CCF task relies on equivalent nociceptive responses to acquire the learn association. 

Nociceptive differences were assessed using the tail flick task. All groups had equivalent latencies 

responded to the hot water bath (Figure 10; F(3,44) = 0.134, p = 0.939); therefore, pain threshold 

differences can be ruled out as a variable in CCF mean freezing levels. 

 

Figure 10 Tail Flick Data. No significant differences were observed between treatment groups 
in mean latency (± SEM) to remove the tail from a hot water bath.  

 

 

Tissue Examination 

SDS-Page Western Blotting 

 To examine protein changes due to effect of treatments, various AD pathology, insulin 

dysregulation, and GABAB receptor targets (Table 1) were examined.  

Protein levels of phosphorylated tau (pTau) was examined in the hippocampus and the 

cortex. A significant increase in pTau in proportion to total tau was observed in the hippocampus 

tissue of the STZ group (Figure 11A; F(3,26) = 7.329, p = 0.001; Tukey post-hoc analysis: Control 

versus STZ, p = 0.028) while no changes were observed for total tau in the hippocampus (F(3,28) = 
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0.332, p = 0.802). Cortex protein levels of pTau were unchanged between treatment groups (Figure 

11B; F(3,28) = 1.694, p = 0.191), consistent with the progression of AD pathologies.  

 

Figure 11 Western Blotting Data: Phosphorylated Tau/Tau. A. Representative images of the 
western blot for phosphorylated Tau/Tau (pTau/Tau) in the hippocampus. STZ group displayed a 
significant increase in protein levels compared to controls. B. Representative images of the western 
blots for pTau/Tau in the cortex. No significant differences were observed between treatment 
groups. * = significantly different from controls, p < 0.05. 

 

 

 To examine a major target in a potential mechanism of increased tau phosphorylation, 

GSK3b protein levels were analyzed in the hippocampus and the cortex. Phosphorylated GSK3b 

is the inactive form of the kinase and is inhibited from phosphorylating tau (Llorens-Martin et al., 

2014). In this analysis, the ratio of phosphorylated GSK3b (pGSK3b) to GSK3b were compared. 

In the hippocampus, no significant differences were observed between treatment groups (Figure 

12A; F(3,28) = 2.523, p = 0.078). However, the baclofen group displayed a trend in reduced 

pGSK3b/GSK3b (Tukey post hoc analysis: Control versus Bac, p = 0.076). No differences were 

seen in overall hippocampal GSK3b protein levels (F(3,28) = 0.614, p = 0.612). The cortex tissue 

did not reveal significant differences in pGSK3b between treatment groups (Figure 12B; F(3,28) = 

0.634, p = 0.599). Therefore, GSK3b levels were unchanged in this AD model. 
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Figure 12 Western Blotting Data: GSK3b. A. Representative images of the western blot in 
the hippocampus. No significant differences were observed in the mean proportion to control (± 
SEM) between treatment groups. B. Representative images of the western blot in the cortex. 
Similarly, no significant differences were found between treatment groups.  

 

 

In addition to pTau, another major pathology of AD are increased levels of total Ab 

oligomers. However, in this model, no changes in Ab oligomer levels with treatment of STZ in 

the hippocampus (Figure 13; F(3, 28) = 1.305, p = 0.292). Since no changes were found in the 

hippocampus, Ab oligomer levels in the cortex were not analyzed. 

 

Figure 13 Western Blotting Data: Ab Oligomers. Representative images of the western blot. 
No differences in protein levels for Ab Oligomers were found in the hippocampus.  
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Insulin degrading enzyme (IDE) protein levels were analyzed in the hippocampus and 

cortex to detect a mechanism of altered insulin dysregulation in AD. No changes were observed 

in either the hippocampus (Figure 14A; F(3,28) = 0.144, p = 0.933) or the cortex (Figure 14B; F(3,28) 

= 1.76), p = 0.178). Therefore, the mechanism of clearance of insulin and Ab in this model were 

unchanged. 

 

Figure 14 Western Blotting Data: IDE in Hippocampus and Cortex. A. Representative images 
of the western blot in the hippocampus. No significant differences were observed in the mean 
proportion to control (± SEM) between treatment groups. B. Representative images of the western 
blot in the cortex. Similarly, no significant differences were found between treatment groups.  

 

 

 GABAB receptor subunit protein levels were analyzed to see if the baclofen treatments 

resulted in receptor expression alterations. The obligatory GABABR2 protein levels were assessed 

in the hippocampus and cortex. However, no changes were found in either brain region 

(Hippocampus: Figure 15A; F(3,28) = 1.803, p = 0.170; Cortex: Figure 15B; F(3,28) = 0.009, p = 

0.999). Similarly, no differences were found in the two isoforms of GABAB1 receptor in the 
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hippocampus (Figure 15C; GABABR1a: F(3,28) = 1.442, p = 0.252; GABABR1b: F(3,28) = 0.112, p 

= 0.952). Baclofen administration did not alter overall GABAB receptor levels.  

 

Figure 15 Western Blotting Data: GABABR2 and GABABR1. A. Representative images of 
the GABABR2 western blot in the hippocampus. No significant differences were observed in the 
mean proportion to control (± SEM) between treatment groups. B. Representative images of the 
GABABR2 western blot in the cortex. Similarly, no significant differences were found between 
treatment groups. C. Representative images of the GABABR1 western blot in the hippocampus. 
No differences were observed between treatment group for either isoform of the receptor.  

 

 

Immunohistochemistry 

 Protein levels for phagocytic microglia (or reactive microglia) and histological staining for 

microvasculature hemorrhages were analyzed using immunohistochemistry.  

 Iba1 protein is specific for reactive microglia. In the hippocampus, a significant increase 

in the number of reactive microglia was observed for the STZ group (Figure 16A; F(3,183) = 3.998, 
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p = 0.009; Tukey post-hoc analysis: Control versus STZ, p = 0.005). In the cortex tissue, a 

significant increase was found between the STZ group receiving baclofen and the baclofen alone 

group (Figure 16B; F(3,187) = 3.168, p = 0.026; Tukey post-hoc analysis: Bac versus STZ Bac, p = 

0.05). The STZ group was not significantly different from controls in the cortex (Control versus 

STZ, p = 0.343). These results suggest that STZ administration leads to reactive microglia in the 

hippocampus and elevated, yet not significant numbers in the cortex. The combination of STZ and 

baclofen treatments leads to increase number of Iba1 positive microglia in the cortex compared to 

baclofen alone.  

 

Figure 16 Immunohistochemistry Data: Iba1. A. Representative images of Iba1 positive 
microglia in the hippocampus. The STZ group had significantly more Iba1 microglia versus 
controls. B. Representative images of Iba1 positive microglia in the cortex. The STZ Bac group 
displayed an increase number of Iba1 positive microglia compared to the Bac group. * = 
significantly different from control, p < 0.05. # = significantly different from Bac, p < 0.05. 

 
 

 Microvascular hemorrhages are found in AD and diabetic patients. As revealed by Prussian 

blue staining, the number of microvascular hemorrhages were not statistical significant between 

treatment groups in the hippocampus (Figure 17A; F(3,43) = 0.217, p = 0.189) and in the cortex 

(Figure 17B; F(3,44) = 1.034, p = 0.387). Based on these results, STZ treatment did not result in 

microhemorrhages during the time frame of this experiment.  
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Figure 17 Immunohistochemistry Data: Prussian blue. No changes were observed between 
treatment groups in the number of microhemorrhages in the hippocampus (A.) or the cortex (B.). 

 

 
RT-PCR 

 Cytokine mRNA levels associated with AD were measured using RT-PCR. IL-1b is a pro-

inflammatory cytokine that is increased in AD patients. In this experiment, IL-1b RNA expression 

was significantly increased in the STZ group in the hippocampus (Figure 18A; F(3,44) = 10.1928, p 

= 0.000; Tukey post-hoc analysis: Control versus STZ, p = 0.000). The STZ group displayed 

significantly reduced RNA expression in the cortex compared to the baclofen group, but not the 

control group (Figure 18B; F(3,44) = 5.834, p = 0.0019; Tukey post-hoc analysis: Control versus 

STZ, p = 0.1407; Bac versus STZ, p = 0.0009). These results demonstrate that STZ administration 

is able modulate pro-inflammatory cytokine levels in a region-specific manner. 
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Figure 18 RT-PCR Data: IL-1b. A. The STZ group displayed significantly increased levels 
of IL-1b RNA in the hippocampus compared to controls. B. The STZ group had significantly 
reduced IL-1b RNA compared to the baclofen alone group. * = statistically significant versus 
controls, p < 0.05. # = statistically significantly versus baclofen, p < 0.05.  

 

 

 IL-10 anti-inflammatory RNA levels were examined in the hippocampus and cortex. The 

STZ group displayed a significant increase in IL-10 RNA levels in the hippocampus (Figure 19A; 

F(3,44) = 11.8987, p = 0.000; Tukey post-hoc analysis: Control versus STZ, p = 0.000). In the cortex, 

the baclofen group displayed significantly elevated RNA levels compared to controls while no 

changes were found in the STZ group (Figure 19B; F(3,44) = 15.8617, p = 0.000; Tukey post-hoc 

analysis: Control versus Bac, p = 0.000).  
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Figure 19 RT-PCR Data: IL-10. A. The STZ group displayed significantly increased levels of 
IL-10 RNA in the hippocampus compared to controls. B. The baclofen group revealed significantly 
elevated IL-10 RNA expression compared to the controls. * = statistically significant versus 
controls, p < 0.05.  

 

 

 Other pro-inflammatory markers were assessed in the hippocampus. Both groups given 

STZ (STZ and STZ Bac) displayed a significant decrease in TNF a RNA levels (Figure 20A; F(3,44) 

= 9.3223, p = 0.0001; Tukey post-hoc analysis: Control versus STZ, p = 0.0003; Control versus 

STZ Bac, p = 0.0039). The baclofen group exhibited a significant increase with both IL-1a (Figure 

20B; F(3,44) = 3.0885, p = 0.0367; Tukey post-hoc analysis: Control versus Bac, p = 0.0362) and 

IL-6 (Figure 20C; F(3,44) = 3.3211, p = 0.0282; Control versus Bac, p = 0.0311) in the hippocampus. 

Both the STZ administration and, separately, the GABAB agonist influences pro-inflammatory 

markers.  
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Figure 20 RT-PCR Data: TNF a, IL-1a, and IL-6. A. The STZ and STZ Bac group displayed 
significantly lower RNA expression levels of TNF a in the hippocampus compared to controls. B. 
The baclofen group revealed significantly elevated IL-1a RNA expression compared to the 
controls in the hippocampus. C. The baclofen group show elevated IL-6 RNA levels in the 
hippocampus. * = statistically significant versus controls, p < 0.05.   
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CHAPTER 5 

DISCUSSION 

 The purpose of this study is to examine the role of GABAB receptors on neuroinflammation 

and AD pathology in a diabetes rodent model. We found that inducing hyperglycemia using the 

compound STZ resulted in behavioral, biochemical, and inflammatory changes similar to what is 

observed in other AD rodent models and in the AD patient population. Further, we found that 

administration of a GABAB receptor agonist (baclofen) attenuated the AD-related behavior deficits 

and pathologies induced by STZ.  

 Analysis of a diabetic-like state during STZ injections was made by measuring blood 

glucose levels. STZ is capable of producing mild to severe diabetes depending on dosage and 

schedule of administration (Deeds et al., 2011). A single, high doses of STZ (100-200 mg/kg IP) 

leads to a severe hyperglycemic state, with excessively high blood glucose levels (>400 mg/dL) 

occurring rapidly in animals and a 70±7% mortality rate (Lu et al., 1998; Ito et al., 1999; Hayashi 

et al., 2006; Bloch et al., 2006). The choice of a low-dose (40 mg/kg IP), staggered protocol used 

in this experiment reflects our concerns over the permanent destruction of pancreatic beta cells 

that would result in little to no production of insulin does not result in AD pathologies. STZ-

induced diabetes can be highly variable and a clear, standard protocol does not exist in the literature 

(Deeds et al., 2011). Variability in response to STZ occurs between mouse strains and also within 

subgroups (age, vendor, and even inbred strain) of the same genetic background, complicating the 

STZ administration protocol (Gurley et al., 2006; Deeds et al., 2011). A low-dose, staggered 

protocol allows researchers to monitor the level blood glucose to determine if another STZ 

administration is necessary throughout the experiment and to avoid irreversible and extensive 

toxicity. STZ has acute effects (24-48 hours) and longer term effects (up to two weeks) on 
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pancreatic beta cells (Deeds et al., 2011). Immediately after administration, the destruction of 

pancreatic beta cells results in excessive insulin release and hypoglycemia (Szkudelski, 2001). The 

drop in insulin production can be observed by the increase in blood glucose levels. Some of the 

surviving cells begin to die within two weeks after STZ due to infiltration of lymphocytes, further 

increasing blood glucose levels (Like and Rossini, 1976; OBrien et al., 1996). The pattern can be 

observed by a gradual increase of blood glucose levels over time that eventually plateaus (Figure 

2). In this experiment, our goal was to achieve a group average of 250 mg/dL to avoid mortality 

that can occur with significantly elevated hyperglycemia. After seven intermittent injections on 

days 1, 2, 3, 14, 15, 35, and 44, blood glucose levels reached an average of 250 mg/dL with zero 

mortality rate among our animals.  

 Administration of the GABAB receptor agonist, baclofen, had an interesting effect on blood 

glucose levels. Pancreatic beta cells produce and respond to the neurotransmitter GABA, where it 

plays a role in regulating insulin secretion (Wan et al., 2015). In addition to beta cells, the pancreas 

contains alpha cells that increases insulin secretion in response to GABA (Brice et al., 2002). 

Although the signaling mechanism of GABA on beta and alpha cells is not fully elucidated, a 

proposed mechanism exists. For example, it is thought that beta cells release insulin in response to 

increasing glucose levels, which activates insulin receptors on alpha cells. This leads to the 

translocation and subsequent upregulation of GABAA receptors on the alpha cell surface that 

increases membrane depolarization resulting in the inhibition of glucagon release (E Xu et al., 

2006). Glucagon is a hormone that has the opposite function of insulin in that can increase glucose 

levels in the blood. This pathway has suggested to be disrupted in diabetic patients that results in 

unsuppressed glucagon secretion (Wan et al., 2015).  
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Pancreatic beta cells respond differently compared to alpha cells in the presence of GABA, 

where GABA results in membrane depolarization and subsequent release of insulin (Dong et al., 

2006; Braun et al., 2010; Soltani et al., 2011). However, studies investigating GABAB receptor 

modulation on insulin release have shown conflicting results. For example, GABAB receptors 

suppress insulin release in the presence of high glucose concentrations (over 180 mg/dL) (Gu et 

al., 1993; Brice et al., 2002) but have no effect on lower glucose levels (Brice et al., 2002; Wan et 

al., 2015). In addition, pre-treating non-obese diabetic mice (transgenic mice that develop diabetes 

without the weight gain) with baclofen delays the onset of diabetes and increases beta cell 

proliferation (Beales et al., 1995). Conversely, mice lacking GABAB receptors (specifically, 

GABABR1 subunit) exhibit increased pancreatic insulin release compared to wildtype controls 

(Szkudelski, 2001). In our experiment, activation of pancreatic GABAB receptors via baclofen 

appeared to have a slightly beneficial effect. After two days of the baclofen treatment, the STZ 

Bac group displayed significantly decreased levels compared to the STZ group (see Figure 2). 

Importantly, the reported decrease in blood glucose levels was still significantly increased 

compared to the control and baclofen alone groups. Therefore, the STZ Bac displayed significantly 

elevated blood glucose levels despite the influence of pancreatic GABAB receptors. 

The memory impairments in NOR exhibited by the STZ group are consistent with those 

reported in AD patients and preclinical rodent models (Görtz et al., 2008; Ambrée et al., 2009). 

The NOR task relies on proper functioning of the hippocampus, in that hippocampal lesions result 

in impairments in discrimination between familiar and novel objects (Antunes and Biala, 2012). 

In AD, the entorhinal cortex and hippocampal formation are primarily affected in the initial stages 

of the disease (H Braak and E Braak, 1991; 1997). Insulin deficiency produces impairments in 

hippocampal synaptic plasticity and neurogenesis that underlie cognitive deficits (Stranahan et al., 
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2008; Murtishaw et al, in review; Prickaerts et al., 1999; Y Chen et al., 2013; Jabbarpour et al., 

2014). Treatment with baclofen for two weeks prior to testing was able to reverse the STZ-induced 

deficits. As no differences between baclofen alone and control group were found, this suggests 

that the action of baclofen may be mediated through the attenuation of STZ-induced 

neuroinflammation and phosphorylated tau also found in this study.  

Conditioned fear learning was assessed in this model using CCF. The neurological 

mechanisms of fear conditioning are well studied and highly conserved across species (LeDoux, 

1994). Our experiment used a variation in CCF training protocol called trace conditioning, where 

there is a time interval separating the offset of the tone and the onset of the shock. This protocol 

increases the level of difficulty in associating of the auditory cue and the contextual environment 

with the shock. Lesion studies demonstrate that the cued fear association portion of this task 

(responding to the cue alone in an altered context from which subjects were shocked) is dependent 

on both the hippocampus and amygdala, while the context portion of the task (responding the 

environment in which they were shocked without cue presentations) depends primarly on the 

hippocampus (Solomon and Vander Schaaf, 1986; Moyer et al., 1990; Sutherland and RJ 

McDonald, 1990; C Chen et al., 1996). In AD, amygdalar-hippocampal communication is 

disrupted, resulting in impaired acquired conditioned fear response (Hamann et al., 2002). 

Preclinical AD models also show fear response deficits in CCF (Webster et al., 2014) (Kilgore et 

al., 2010; Hanna et al., 2012). In our study, animals exhibited equal freezing behavior after the 

presentation of the conditioned stimulus (CS) and unconditioned stimulus (US) pairings during the 

training session. In the Cued Fear session, the STZ group displayed an increase in freezing 

behavior compared to controls across the presentation of the cues. This increase in freezing may 

reflect an anxiolytic phenotype. Similar to what was observed in the open field test, where the data 



www.manaraa.com

 
 
 

66 

hint at anxiety-like behavior with the STZ group, in that these animals had a nonsignificant trend 

towards more time in the perimeter of the chamber. Studies have reported that metabolic disorders 

and STZ-induced diabetes can lead to increased reactivity of the HPA axis, which results in 

hypersensitivity and the inability to effectively shut off the stress response (Scribner et al., 1991; 

Magariños and McEwen, 2000; Ikeda et al., 2015). Changes in pain response were also evaluated 

using the tail flick test and no differences were observed. Interestingly, all groups showed 

equivalent freezing behavior in the Contextual Fear portion, the session that has the most 

hippocampal contribution. It is possible that cue and the context are too salient to detect a 

difference between groups, even with the more challenging trace conditioning training protocol.  

Several protein targets associated with AD were analyzed in the hippocampus and cortex 

of animals in this experiment to understand the molecular mechanisms linking diabetes and the 

effect of baclofen administration. No changes in Ab oligomers were observed between treatment 

groups. This is not surprising as the metabolism of APP in rodents is different compared to humans 

and they do not develop toxic Ab oligomers. Typically, transgenic animals expressing human APP 

or direct infusion of Ab42 peptides into the brain in non-transgenic rodent models display 

significant changes in brain Ab oligomers. Along with the lack of changes in Ab, no differences 

IDE protein levels were found between treatment groups. Even though STZ results in insulin 

dysfunction, IDE may not be affected without the competition of elevated Ab. However, region 

specific changes with phosphorylated tau were found in the STZ group. The STZ group had 

significantly increased phosphorylated tau in the hippocampus that was attenuated by the baclofen 

administration. Increased levels of phosphorylated tau correlate with cognitive and memory 

deficits, similar to what was observed in NOR with the STZ group. The lack of change with 

phosphorylated tau in the cortex is consistent with Braak staging in AD, with NFT beginning in 
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the hippocampus initially then eventually appearing in the cortex in late stages of the disorder (H 

Braak and E Braak, 1991; 1997; H Braak et al., 2006). As mentioned previously, NFTs (composed 

of hyperphosphorylated tau) have high correlation with poor memory performance in AD patients 

and in preclinical models (H Braak and E Braak, 1991; Arriagada et al., 1992; Bancher et al., 1993; 

H Braak and E Braak, 1997; Guillozet et al., 2003; SantaCruz, 2005). For example, in a study 

using a preclinical AD model with tau mutations, untreated transgenic mice displayed significant 

deficits in the NOR task while administration of a phosphorylated tau antibody ameliorated the 

impairment (Sankaranarayanan et al., 2015). To examine a potential mechanism of increased 

phosphorylated tau associated with AD, we analyzed GSKb levels in the hippocampus and cortex. 

Over-activity of GSKb can lead to increases in phosphorylated tau, memory impairments, and Ab 

oligomer production (Hooper et al., 2007). However, no changes were observed in GSKb protein 

levels in hippocampus or cortex between treatment groups. According to several AD hypotheses, 

Ab peptides indirectly leads GSK3b activity which then all contribute to phosphorylated tau 

(Terwel et al., 2008; Dewachter et al., 2009; Kremer et al., 2011). Therefore, hyperphosphorylated 

tau may have occurred through increased inflammation in this study rather than through altered 

GSK3b signaling that was attenuated by reduced inflammation via GABAB receptor activation. 

 Neuroinflammation and neuroinflammatory markers were examined in this experiment, as 

they are a characteristic of diabetes and AD pathology (Mrak and Griffin, 2005a). Microglia 

constantly survey the environment and receive signals from surrounding cells. Brain tissue injury, 

invading pathogens, and pathological conditions associated with neurological disorders can cause 

microglia to be reactive, a state in which they surround and attempt to clear the debris. In addition, 

microglia change their morphology, upregulate cell-surface receptors, and release cytokines, 

chemokines, and other factors with the goal of repairing and restoring the area to homeostasis 
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(Solito and Sastre, 2012). While this response proves to have immediate beneficial effects in the 

brain, sustained neuroinflammation due to pathological conditions, such as those seen in AD, can 

lead to damage and accumulation of the pathogen that initially triggered the response. Our 

hypothesis was that administration of STZ would lead to an increased number of reactive 

microglia, elevated pro-inflammatory cytokines and an increase in anti-inflammatory cytokines, 

as neuroinflammation has been demonstrated to produce cognitive deficits in similar studies using 

STZ (Biessels et al., 1998; 2007; Jabbarpour et al., 2014). 

Our results showed that the STZ group displayed an increased number of reactive microglia 

and elevated IL-1b pro-inflammatory cytokine RNA levels in the hippocampus but not the cortex. 

Microglia and IL-1b can influence the phosphorylation of tau. Consistent with data from our study, 

elevated expression IL-1b leads to increased phosphorylated tau (Yuekui Li et al., 2003; Gorlovoy 

et al., 2009) and overexpression of IL-1b in the hippocampus of non-APP mice lead to memory 

impairments (Moore et al., 2009; Hein et al., 2010; DC Lee et al., 2013). Treatment with baclofen 

reduced the number of reactive microglia, expression of IL-1b, and phosphorylated tau induced 

by STZ back to control and baclofen alone levels in the hippocampus. Therefore, it appears that 

the reactive microglia and the pro-inflammatory cytokine IL-1b in the STZ be involved in the 

hyperphosphorylated tau and behavioral deficits that are all reversed by GABAB activation.  

Our results also found increased expression of IL-10 RNA in the hippocampus of the STZ 

group, while the baclofen alone group had significant elevated RNA expression of IL-10 in the 

cortex. IL-10 is an anti-inflammatory cytokine and is a key player in controlling the immune 

response in the brain (Wyss-Coray and Mucke, 2002; Williams et al., 2004; Ming O Li and Flavell, 

2008). Studies have reported increased levels of IL-10 protein and RNA in preclinical models of 

AD (Apelt and Schliebs, 2001; Heneka and OBanion, 2007) while no correlation in AD patient 
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tissue has been found (Apelt and Schliebs, 2001). Increases in anti-inflammatory markers may be 

attempting to counteract actions of reactive microglia and pro-inflammatory cytokines. The STZ 

group showed a region-specific elevation with IL-10 that correlates with the region-specific 

changes in reactive microglia, phosphorylated tau, and IL-1b data that is also reversed by the 

administration of baclofen. Conversely, the region-specific changes with the baclofen alone group 

is puzzling. However, one should keep in mind that neuroinflammatory processes are highly 

interactive and do not occur in isolation. Amplification of one mediator leads to a dampening of 

another which all interact and influence different inflammatory pathways. Therefore, elevation of 

IL-10 RNA in the cortex requires further elucidation.   

TNFa is another common pro-inflammatory cytokine associated with AD and diabetes 

examined in this study. We found a significant decrease in TNFa RNA expression levels in both 

the STZ and STZ Bac group in the hippocampus. In AD patients and preclinical models, as well 

as diabetic patients and STZ preclinical models, TNFa is significantly elevated (Dickson et al., 

1993; Benzing et al., 1999; Limb et al., 1999; Mehlhorn et al., 2000; Carmo et al., 2000; Krady et 

al., 2005; Gezen-Ak et al., 2013), where it is found to be a mediator of acute and chronic 

inflammation and activated by Ab-induced cytotoxicity in AD (PB Rosenberg, 2005). However, 

researchers have suggested that TNFa levels may wax and wane during different stages of AD. 

For example, a study examining brain tissue of AD patients found lower TNFa levels in the cortex 

and hippocampus of AD patients compared to healthy age-matched controls (Lanzrein et al., 1998) 

that correlated with a previous study that found lower TNFa serum levels (Cacabelos et al., 1994). 

Low levels of TNFa in AD may be indicative of a dysfunctional inflammatory process (Lanzrein 

et al., 1998; Gezen-Ak et al., 2013). In addition, high levels of IL-10 can inhibit the synthesis of 

TNFa (PB Rosenberg, 2005), which correlates with our findings in the STZ group. Whether 
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elevated IL-10 RNA expression in the STZ group is inhibiting TNFa or if there is altered 

neuroflammatory processes induced by STZ is unclear in this experiment. However, the reduction 

in TNFa in the STZ group was not rescued by the baclofen treatment, suggesting that GABAB 

activation was not able to modulate this cytokine.  

IL-6 RNA levels were increased in the hippocampus of the baclofen alone group. IL-6 is 

detectable at low levels in healthy adults and significantly elevated under pathological conditions 

(Vallières and Rivest, 1997). Although IL-6 can add to detrimental AD pathology, it does exhibit 

immunosuppressive and anti-inflammatory properties under certain conditions. Several studies 

have found that IL-6 regulates neuronal survival and function (Gadient and Otten, 1997; Gruol and 

Nelson, 1997; Campbell, 1998; Feng et al., 2015). Specifically, one study found that baclofen 

attenuated lipopolysaccharide-induced increase in IL-6 in microglia cell culture. Further, the same 

study showed that baclofen alone dose-dependently reduced IL-6 released by microglia (Kuhn et 

al., 2004). Similarly, the baclofen alone group displayed increases in the pro-inflammatory IL-1a 

in the hippocampus. Although IL-b and IL-1a bind to the same receptor, little is discussed about 

the role of IL-1a in AD or diabetes. Therefore, the increases in IL-6 and IL-1a levels after GABAB 

receptor activation require further evaluation. 

Administration of baclofen attenuated the STZ-induced levels of several 

neuroinflammatory markers and memory deficits. Reactive microglia increase their expression of 

GABAB receptors (Kuhn et al., 2004), suggesting that they play a role in regulating 

neuroinflammation. Microglia GABAB receptors attenuate the release of lipopolysaccharide-

induced IL-6 but does not influence TNFa release (Kuhn et al., 2004). We examined GABAB 

receptor subunit protein expression in the hippocampus and cortex in the treatment groups. 

Although no differences were found, there appears to be a trend towards an increase in both of the 



www.manaraa.com

 
 
 

71 

groups who received baclofen (Bac and STZ Bac) for the GABABR1a isoform in the hippocampus. 

However, the homogenized tissue examined was not specific to microglia and detects neuronal 

GABAB receptor levels as well. Alterations in neuronal GABAB receptor levels could disrupt the 

synchrony and network of systems within the brain and have deleterious implications on learning 

and memory (Heaney and Kinney, 2016). If the treatments in this experiment altered the levels of 

microglial GABAB receptors, using the western blot procedure would not be sensitive enough to 

detect changes. Given the data we have with baclofen administration in STZ animals (rescue in 

memory impairment, phosphorylated tau, reactive microglia number, IL-1b, and IL-10), we can 

indirectly infer that GABAB receptors play a role in modulating microglia function. 

Overall, this experiment demonstrates that administration of STZ leads to select AD 

pathologies and microglia-induced neuroinflammation that are ameliorated by chronic activation 

of GABAB receptors. Further studies are required to outline mechanism by which STZ leads to 

AD-related behavior and protein changes in the brain. For instance, examining insulin receptor 

number and resistance would be beneficial in stating how much insulin dysregulation contributes 

to the neuroinflammation with our STZ model. With regards to future studies using baclofen in a 

STZ model, intracerebroventricular infusions instead of systemic administration should be a 

consideration to bypass the effect baclofen had on pancreatic beta cells. Limitations to the present 

study include a direct link to GABAB specifically on microglia. Using flow cytometry that selects 

for specific proteins on microglia would be advantageous in providing a direct link to the current 

study. Further, evaluating the effects of STZ administration in a mouse model that lack GABAB 

receptors specifically on microglia can shed light on immune functions. By crossing CX3CR1 

mice (CX3CR1 are receptors expressed only by microglia in the brain (Cardona et al., 2006)) with 

Cre/Lox inducible GABABR1lox511/lox511 mice, we can induce the inactivation of GABAB receptors 
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on microglia. We could then evaluate behavior and biochemical changes after STZ administration 

in these animals to elucidate the role of GABAB receptors on microglia. Even though questions 

remain to be answered regarding how GABAB receptors are involved in the neuroinflammatory 

response, this study provides data that demonstrates GABAB receptor activation attenuates 

neuroinflammatory markers and subsequent AD pathologies.  
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Education: 
  
University of Nevada, Las Vegas, 2010-Present  

Ph.D. in Experimental Psychology, Neuroscience Area (Defense Date: January 17, 2017) 
Dissertation Title: “An Evaluation of GABAB Receptors on Modulating 
Neuroinflammation in a Non-Transgenic Animal Model of Alzheimer’s Disease” 
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 Candidate training for medical science liaison positions in the pharmaceutical industry.  
 
University of Nevada, Las Vegas, 2013 
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Thesis Title: “Alterations of NMDA and GABAB Receptor Function in 
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Teaching Experience: 
 
Academic Success Center Bridge Instructor: Summers 2014 and 2015 
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Instructor incoming college freshman in remedial math course topics to prepare 
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implementing assignments and research projects, mentoring students, and 
grading. 

 
Research Mentor Experience: 
 
Mentor for Undergraduate Research in Nevada INBRE (IDeA Network of Biomedical Research 
Excellence) Undergraduate Research Opportunities Program: Summer 2012-2015 

Mentored undergraduate students receiving the summer Nevada INBRE grant. Students 
received hands-on laboratory experience in behavioral neuroscience.  

 
Mentor for Undergraduate Research in EPSCoR/IDeA Undergraduate Research Opportunities 
Program: Spring 2015 

Mentored undergraduate student receiving NSF grant to conduct research in a STEM 
based laboratory.  

 
Mentor for UNLV McNair Scholars Summer Research Institute: (Summer 2013-2014) 

Mentored undergraduate students receiving McNair Scholarship awards. Students 
received hands-on laboratory experience in behavioral neuroscience.  
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63. 

 
Sabbagh JJ, Heaney CF, Bolton MM, Murtishaw AS, Ure JA, Kinney JW (2012).  

Administration of donepezil does not rescue galanin-induced spatial learning  



www.manaraa.com

 
 
 

106 

deficits. International Journal of Neuroscience 122(12): 742-7.  
 
Bolton MM, Heaney CF, Sabbagh JJ, Murtishaw AS, Kinney JW (2012). Deficits in  
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Behavioral Brain Research 233(1): 35-44. 
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pathologies following low-dose, staggered administration of streptozotocin.  
Psychopharmacology. 

 
Bolton MM, Murtishaw AS, Heaney CF, Langhardt MA, Kinney JW (in prep).  

Interactions of ketamine administration and mTOR signaling on parvalbumin  
positive neurons. Translational Psychiatry.  

 
Bolton MM, Murtishaw AS, Heaney CF, Langhardt MA, Kinney JW (submitted).  

Evaluation of ketamine-induced changes in spatial working memory and  
GABAergic systems. Progress in Neuropsychopharmacology and Biological  
Psychiatry.  

 
Heaney CF, Bolton MM, Murtishaw AS, Langhardt MA, Kinney JW (in review). Dose  

response effects of GABAB ligands on spatial learning and memory. Learning and 
Memory.  

 
Hensleigh E, Murtishaw A, Treat MD, Bolton MM, Heaney CF, Kinney JW, van  

Breukelen, F (in review). Torpor does not influence spatial memory in hibernating  
golden-mantled ground squirrels. Learning and Behavior. 

 
Presentations: 

Bolton MM. An evaluation of GABAB receptors in modulating neuroinflammation. Talk 
given at the COBRE CNTN 1st Annual Meeting at the Cleveland Clinic Lou Ruvo 
Center for Brain Health in Las Vegas, NV, 2016. 

Bolton MM, Murtishaw AS, Salazar AM, Calvin, KN, Nagele, RF, Bergman HO, 
Kinney JW. An evaluation of GABAB receptors in modulating 
neuroinflammation. Poster presented at the Society for Neuroscience in San 
Diego, CA, 2016. 

Bolton MM, Heaney CF, Murtishaw AS, Langhardt MA, Calvin KN, Kinney JW. 
Interactions of Ketamine Administration and mTOR Signaling on Parvalbumin 
Positive Neurons. Poster presented at AAPS National Biotechnology Conference 
in Boston, MA, 2016.  
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Bolton MM, Heaney CF, Murtishaw AS, Langhardt MA, Calvin KN, Kinney JW. 
Interactions of Ketamine Administration and mTOR Signaling on Parvalbumin 
Positive Neurons. Poster presented at Society for Neuroscience in Chicago, IL, 
2015. 

Bolton MM, Heaney CF, Murtishaw AS, Langhardt MA, Kinney JW. Interactions of 
behavioral training and ketamine administration on changes in parvalbumin 
positive neurons. Poster presented at the International Behavioral Neuroscience 
Society Annual Meeting in Victoria, British Columbia, 2015.  

Bolton MM, Heaney CF, Murtishaw AS, Langhardt MA, Kinney JW. Interactions of 
behavioral training and ketamine administration on changes in parvalbumin 
positive neurons. Talk given at UNLV Graduate and Professional Student 
Association Research Forum, 2015.  

Bolton MM, Heaney CF, Murtishaw AS, Langhardt MA, Kinney JW. Interactions of 
behavioral training and ketamine administration on changes in parvalbumin 
positive neurons. Poster presented at the American Chemical Society in 
Henderson, NV, 2014.  

Bolton MM, Heaney CF, Murtishaw AS, Langhardt MA, Kinney JW. Interactions of 
behavioral training and ketamine administration on changes in parvalbumin 
positive neurons. Poster presented at Society for Neuroscience annual meeting 
Washington DC, 2014.  

Bolton MM, Heaney CF, Murtishaw AS, Kinney JW. Developmental alteration of 
GABAB receptor function results in behavioral deficits in adulthood. Poster 
presented at The Sierra Nevada Chapter for Society for Neuroscience 5th Annual 
Research Symposium in Reno, NV 2013. 

Bolton MM, Heaney CF, Murtishaw AS, Kinney JW. Developmental alteration of 
GABAB receptor function results in behavioral deficits in adulthood. Poster 
presented at Society for Neuroscience annual meeting San Diego, CA 2013. 

Bolton MM, Heaney CF, Sabbagh JJ, Murtishaw AS, Magcalas CM, Kinney JW. 
Comparison of postnatal ketamine dosage on behavioral deficits in adulthood. 
Presentation at the University of Nevada, Las Vegas Graduate and Professional 
Student Association Research Forum 2013.  

Bolton MM, Heaney CF, Sabbagh JJ, Murtishaw AS, Magcalas CM, Kinney JW. 
Comparison of postnatal ketamine dosage on behavioral deficits in adulthood. 
Poster presented at The Sierra Nevada Chapter for Society for Neuroscience 4th 
Annual Research Symposium in Reno, NV 2012. 
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Poster presented at Society for Neuroscience annual meeting New Orleans, LA 
2012. 

Bolton MM, Heaney CF, Sabbagh JJ, Murtishaw AS, Kinney JW (2011, November).  
Comparison of an Adult and Developmental Animal Model of Schizophrenia. 

Poster  
presented at Society for Neuroscience annual meeting in Washington, D.C. 

 
Invited Speaking Engagements 
 

Association for Psychological Science Student Caucus Invited Panelist: May 2014. 
Invited to speak at a panel during the Association for Psychological Science (APS) 
national conference. The panel is organized by the APS Student Caucus and titled “The 
Naked Truth Part II: Surviving Graduate School.”  
Psi Chi International Honor Society in Psychology, UNLV Local Chapter, Invited 
Panelist: January 2015: Invited to speak on a panel during the Psi Chi UNLV Local 
Undergraduate Chapter meeting. The panel consisted of current graduate students 
discussing their experience getting into graduate school and life in graduate school.  

 
Awards/Grants: 
 

Doctoral Graduate Research Assistantship: Fall 2015 – Spring 2016 ($15,500).  
Examination of biomarkers and novel treatments in Alzheimer’s disease.  
 
Patricia Sastaunak Scholarship: Fall 2015 – Spring 2016 ($2,500). Competitive  
university-wide scholarship awarded to graduate students who have demonstrated 
substantial academic accomplishments.   

 
University of Nevada, Las Vegas Graduate Professional Student Association Travel 
Award: Summer 2015 ($450). University-wide travel grant to aid students with funding 
to present research at national conferences. This award was given to fund travel to the 
International Behavioral Neuroscience Society Annual Meeting in Victoria, B.C., 
Canada. 
 
Outstanding Presentation Award, University of Nevada, Las Vegas Graduate and  
Professional Student Association Annual Research Forum: Spring 2015.  
 
University of Nevada, Las Vegas Graduate Professional Student Association Travel 
Award: Fall 2014 ($800). University-wide travel grant to aid students with funding to 
present research at national conferences. This award was given to fund travel to the 
Society for Neuroscience conference in Washington, D.C. 
 
University of Nevada, Las Vegas Graduate Professional Student Association Travel 
Award: Summer 2014 ($200). University-wide travel grant to aid students with funding 
to present research at national conferences. This award was given to fund travel to the 
Association for Psychological Sciences conference in San Francisco, CA.  
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Outstanding Presentation Award, University of Nevada, Las Vegas Graduate and  
Professional Student Association Annual Research Forum: Spring 2014.  
 
Patricia Sastaunak Scholarship: Fall 2013 – Spring 2014 ($2,500). Competitive  
university-wide scholarship awarded to graduate students who have demonstrated  
substantial academic accomplishments. 
 
University of Nevada, Las Vegas Graduate Professional Student Association Travel 
Award: Fall 2013 ($400). University-wide travel grant to aid students with funding to 
present research at national conferences. This award was given to fund travel to the 
Society for Neuroscience conference in San Diego, CA.  
 
Patricia Sastaunak Scholarship: Fall 2012 – Spring 2013 ($2,500). Competitive  
university-wide scholarship awarded to graduate students who have demonstrated  
substantial academic accomplishments.   
 
University of Nevada, Las Vegas Graduate Professional Student Association Travel  
Award: Fall 2012 ($450). University-wide travel grant to aid students with funding to  
present research at national conferences. This award was given to fund travel to Society 
for Neuroscience conference in New Orleans, LA.  
 
Outstanding Presentation Award, University of Nevada, Las Vegas Graduate and  
Professional Student Association Annual Research Forum: Spring 2012.  
 
University of Nevada, Las Vegas Graduate Professional Student Association Travel 
Award: Fall 2011 ($350). University-wide travel grant to aid students with funding to  
present research at national conferences. This award was given to fund travel to the 
Society for Neuroscience conference in Washington, D.C. 

 
University Memberships: 
 

University of Nevada, Las Vegas Psychology Department Experimental Graduate 
Student Committee President: Fall 2012 – Spring 2013. Student-elected position to act 
as the liaison between the psychology department faculty and graduate students. 
Responsibilities include running committee meetings, attend faculty meetings, write 
faculty meeting minutes, and organize Interview Day activities for potential incoming 
graduate students.  

 
University of Nevada, Las Vegas Psychology Department Experimental Graduate 
Student Committee Secretary: Fall 2011 – Spring 2012. Student-elected position to 
document details of the committee meetings. Responsibilities include attending 
committee meetings and taking notes, writing and e-mailing meeting minutes to the 
department, communicate with other graduate students in the department regarding 
activities, and organizing the end of the year party and other  
events.  
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Graduate Neuroscience Association, Co-Founder and Committee Member: Fall 2011 
to present. An association intended to inform graduate students about current research in 
the field of neuroscience.  
 
Neuroscience Journal Club, Co-Founder and Secretary: Fall 2010 – present. An 
organization formed to educate undergraduate students about the field of neuroscience, 
how to read and analyze scientific articles, and organize events in the community.  

   
Professional Memberships: 
 

Medical Science Liaison Society member since 2016 
American Association of Pharmaceutical Sciences member since 2015 
National Association of Professional Women member since 2015 
International Behavioral Neuroscience Society member since 2013 
Association for Psychological Science member since 2013 
Society for Neuroscience, Sierra Nevada Chapter member since 2010 

 Society for Neuroscience member since 2009 
 
Service:  

International Behavioral Neuroscience Society, Student Councilor Elect 2017 
 
Communications and Media Committee Member for the International Behavioral 
Neuroscience Society: January 2015 to present. Recruit members from all over the world 
to join the organization, advertise the society on social media, maintain social media 
platforms, and interview professionals in the field of behavioral neuroscience to promote 
the organization.   
International Student Representative Nominee for the International Behavioral 
Neuroscience Society: June 2015. Nominated as a candidate to represent students 
(graduate and post-doctoral) from all over the world on the International Behavioral 
Neuroscience Society advisory council.   
Psi Chi International Honor Society in Psychology, UNLV Local Chapter Research 
Forum Judge: April 2015. Neuroscience judge for the university undergraduate Psi Chi 
chapter.  
UNLV College of Sciences Science Fair Judge: March 2015. Behavioral and Social 
Science judge for a regional high school science fair.  
Las Vegas Brain Bee Organizer and Judge: February 2015. Appointed as the Logistics 
Coordinator and one of three judges for the Las Vegas Brain Bee. Participants were local 
high school students demonstrating their knowledge in neuroscience. The winner from 
this competition was sent to the National Brain Bee. 
Brain Education Week, Head Coordinator for the Clark County School District: 
Fall 2014. Work with representatives from the Clark County School District to 
incorporate Brain Awareness presentations and knowledge regarding the brain and 
nervous system into school curriculum starting in the 2014-2015 school year.   
Brain Safety Initiative of the International Behavioral Neuroscience Society, 
Volunteer Head Coordinator: June 2014. Initiated the first annual philanthropy event 
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for the International Behavioral Neuroscience Society where we raised over $1000 to 
donate to the local community (Clark County School District’s Safe Routes to School 
Program). In addition, I implemented and organized an educational outreach event in a 
local school (Wright Elementary School) where we educated the students on brain facts 
and safety.   
Las Vegas Brain Bee Organizer: February 2014. Appointed as the Logistics 
Coordinator for the Las Vegas Brain Bee. Participants were local high school students 
demonstrating their knowledge in neuroscience. The winner from this competition was 
sent to the National Brain Bee. 
Nevada Brain Bee Association, Co-Founder and Board Member: Fall 2013 – present. 
Under the umbrella of the International Brain Bee Association, the Nevada Brain Bee 
Association held the Inaugural Las Vegas Brain Bee in February 2014. This annual event 
is for high school students to demonstrate their knowledge of the brain and compete for a 
spot at the National Brain Bee to represent the state of Nevada. The winner at our 
Inaugural Las Vegas Brain Bee took third place overall in the National Brain Bee 
competition in March 2014, putting Las Vegas on the map for neuroscience education.   
Brain Awareness Campaign, Head Coordinator at UNLV: Fall 2012 – present. The 
Brain Awareness educates the public and promotes brain science at local schools and 
community centers. Funding for these events provided by the Sierra Nevada Chapter of 
Society for Neuroscience ($200 in 2013 and $650 in 2014).   
APS Mentorship Program: Fall 2010 – present. The APS Mentorship Program helps 
undergraduate students with career plans and future goals by pairing them with a 
graduate student to form a peer-mentor relationship.   

 
 
 


